Formation of Nuclear Ring from Hydrodynamic Simulations using Multipole Expansions

Preliminary result

Jihye Shin¹ (KIAA fellow) & Sungsoo S. Kim²

¹Kavli Institute for Astronomy and Astrophysics (KIAA), Peking University

²Kyung Hee University

Development of Hydrodynamic code - 1

To simulate the sub-galactic scale structure formation in the Lambda CDM model,

we have developed <u>a new cosmological hydrodynamic code</u>. (Shin, Kim, Kim, & Park 2014)

-> EU/HA : Evolution of the Universe simulated with //-body and Hydrodynamic Algorithms

- based on the most efficient code (PM+tree) for the large scale structure, <u>GOTPM</u> (Dubinsky, Kim, & Park 2003)
- improved the hydrodynamics (SPH) into the GOTPM code (mainly by Juhan Kim)
- used a time-step limiter scheme (Saitoh & Makino 2009) over the individual time step
- added the realistic baryonic physics
 - : Reionization process by UV sources and UV shielding (Haardt & Madau 1996, Sawala et al. 2010)
 - : Radiative heating/cooling (T ~ reach to 100K) using CLOUDY 90 package (Ferland et al. 1998)
 - : Star formation as single stellar population (Katz 1992, Abadi et al. 2003, Kroupa 2001)
 - : Metal and energy feedback by SN_{II} (Hurley, Pols, Tout 2000, Okamoto, Nemmen, & Bower 2008, Woosley & Weaver 1995)

Development of Hydrodynamic code - 2

To simulate the sub-galactic structure formation/evolution in non-cosmological frame,

we put the astrophysical gas processes (Shin, Kim, Kim, & Park 2014) into GADGET-2 (Springel 2005).

- radiative heating/cooling, reionization, shielding, star formation, and SN feedback
- mainly by Kyungwon Chun (see poster, P-1)

Research plans

- formation/evolution of CMZ (central molecular zone), nuclear bulge, and CND (circumnuclear disk)
- formation of sub-galactic structures (globular clusters, ultra compact dwarf galaxies) in cosmological frame

Code development plans

- based on Gadget-3 for better scalability
- including multiphase model
- including different star formation efficiency for different gas density (Kruijssen 2012)

Nuclear Star-Forming Rings in External Galaxies

The Milky Way also has a Bar

Migration of Gas toward the Galactic Center

Recent Numerical Simulations

Kim, S. S., Saitoh, T., Jeon, M., Figer, D., Merritt, D., & Wada, K., 2011

- -> <u>3D</u> hydrodynamic simulation using particle-based code (ASURA, Saitoh et al. 2008, 2009)
- + including radiative cooling, star formation, SN feedback
- + galactic potential : m=2 bar with a power-law density profile for the inner Galactic bulge

Kim, W.-T. & Seo, W.-Y., & Kim, Y., 2012

- -> 2D hydrodynamic simulation using grid-based code (CMHOG, Kim, W.-T. et al. 2012)
- + galactic potential :non-axysymmetric stellar bar (Ferrers 1987), stellar disk, stellar bulge, central BH
- + formation and evolution of gaseous substructures in barred galaxies with varying bar strength

Seo, W.-Y., & Kim, Y.-T., 2013

- -> Based on Kim, W.-T. & Seo, W.-Y., & Kim, Y., 2012
- + including star formation and SN feedback

Seo, W.-Y., & Kim, Y.-Y., in press

- -> based on Seo, W.-Y., & Kim, Y.-T., 2013
 - + galactic potential : spiral arms

Our Strategy on Numerical Simulations

- 3-dimensional hydrodynamic simulation
 - + realistic baryonic physics (including radiative cooling/heating, star formation, SN feedback)
 - + realistic mass inflow toward the Galactic center from the disk
 - + long term evolution to see formation of the nuclear bulge
 - + realistic galactic potential of the Galaxy

How do we consider the realistic galactic potential of the Milky Way?

Modeling the Galactic Potentials using Multipole Expansions

Simulation snapshots for the Milky Way-like galaxy model (of J. Baba & T. Saitoh)

($\sim 10^7$ gas and star particles for both disk and bulge components + fixed halo model)

+ multipole expansions for modeling the realistic galactic potentials

Previous Numerical Studies with Multipole Expansions

1. 2-dimensional, cylindrical model (Aoki & Iye 1978) : disk only system

$$\mu_{nm}(R,\phi) = \frac{Ma}{R_a^3} \frac{(2n+1)}{2\pi} P_{nm}(\xi) \exp(im\phi)$$
$$\Phi_{nm}(R,\phi) = -\frac{GM}{R_a} P_{nm}(\xi) \exp(im\phi)$$

2. 3-dimensional, cylindrical model (Hozumi & Hernquist 2005) : numerical problems

$$\mu_{nm}(\mathbf{R}) = \frac{2n+1}{2\pi} \left(\frac{1-\xi}{2}\right)^{3/2} P_{nm}(\xi) \exp(im\theta)$$
$$\Phi_{nm}(\mathbf{R}) = -\left(\frac{1-\xi}{2}\right)^{1/2} P_{nm}(\xi) \exp(im\theta),$$

3. 3-dimensional, spherical model (Hernquist & Ostriker 1992) : specialized for elliptical galaxy

$$\rho_{nlm}(\mathbf{r}) = \frac{K_{nl}}{2\pi} \frac{r^l}{r(1+r)^{2l+3}} C_n^{(2l+3/2)}(\xi) \sqrt{4\pi} Y_{lm}(\theta, \phi)$$
$$\Phi_{nlm}(\mathbf{r}) = -\frac{r^l}{(1+r)^{2l+1}} C_n^{(2l+3/2)}(\xi) \sqrt{4\pi} Y_{lm}(\theta, \phi)$$

Decomposition of Particles as Disk/Bulge Components

<Surface density profile>

<Density map from a simulation

snapshot>

Fitting the surface & volume density profiles of the galaxy using three exponential disks

-> the most extended exponential component = disk

Decomposition of Particles as Disk/Bulge Components

<2-dimensional, cylindrical component>

<3-dimensional, spherical component>

Spherical term (Hernquist & Ostriker 1992)

: using basis function of the density-potential pair of Hernquist (1990)

$$\rho(r) = \frac{M}{2\pi} \frac{a}{r} \frac{1}{(r+a)^3}, \quad \varphi(r) = -\frac{GM}{r+a}$$
Gegenbauer Polynomial

-> a basis set

$$\rho(\mathbf{r}) = \sum_{nlm} A_{nlm} \rho_{nlm}(\mathbf{r}), \text{ where } \rho_{nlm}(\mathbf{r}) = \frac{K_{nl}}{2\pi} \frac{r^l}{r(1+r)^{2l+3}} C_n^{(2l+3/2)}(\xi) \sqrt{4\pi} Y_{lm}(\theta, \phi)$$

$$\Phi(\mathbf{r}) = \sum_{nlm} A_{nlm} \Phi_{nlm}(\mathbf{r}) , \text{ where } \Phi_{nlm}(\mathbf{r}) = -\frac{r^l}{(1+r)^{2l+1}} C_n^{(2l+3/2)}(\xi) \sqrt{4\pi} Y_{lm}(\theta, \phi)$$

-> rewrite after some algebra

$$\rho(r, \theta, \phi) = \sum_{l=0}^{\infty} \sum_{m=0}^{l} P_{lm}(\cos \theta) [A_{lm}(r) \cos m\phi + B_{lm}(r) \sin m\phi]$$

 $\Phi(r, \theta, \phi) = \sum_{l=0}^{\infty} \sum_{m=0}^{l} P_{lm}(\cos \theta) [C_{lm}(r) \cos m\phi + D_{lm}(r) \sin m\phi]^{-1}$ Associated Legendre Polynomial $\mathbb{E}_{\mathbb{E}}^{0}$

-0.5

-1

-1

-0.5

0

$\begin{array}{c} 1 \\ n=5 m=0 \\ n=5 m=1 \\ n=5 m=1 \\ n=5 m=2 \\ n=5 m=4 \\ n=5 m=4 \\ p=0 \\ n=5 m=4 \\ p=0 \\ p=0 \\ n=5 m=4 \\ p=0 \\ p=0 \\ n=5 m=4 \\ p=0 \\$

P₀(X) P₁(X) P₂(X) P₃(X) P₄(X)

Ps(x

1

0.5

Spherical harmonic

Spherical term (Hernquist & Ostriker 1992)

: using basis function of the density-potential pair of Hernquist (1990)

$$\rho(r) = \frac{M}{2\pi} \frac{a}{r} \frac{1}{(r+a)^3}, \quad \varphi(r) = -\frac{GM}{r+a}$$

-> a basis set

$$\rho(\mathbf{r}) = \sum_{nlm} A_{nlm} \rho_{nlm}(\mathbf{r}) , \text{ where } \rho_{nlm}(\mathbf{r}) = \frac{K_{nl}}{2\pi} \frac{r^l}{r(1+r)^{2l+3}} C_n^{(2l+3/2)}(\xi) \sqrt{4\pi} Y_{lm}(\theta, \phi)$$

$$\Phi(\mathbf{r}) = \sum_{nlm} A_{nlm} \Phi_{nlm}(\mathbf{r}) , \text{ where } \Phi_{nlm}(\mathbf{r}) = -\frac{r^l}{(1+r)^{2l+1}} C_n^{(2l+3/2)}(\xi) \sqrt{4\pi} Y_{lm}(\theta, \phi)$$

-> rewrite after some algebra

$$\rho(r,\,\theta,\,\phi) = \sum_{l=0}^{\infty} \sum_{m=0}^{l} P_{lm}(\cos\,\theta) [A_{lm}(r)\,\cos\,m\phi + B_{lm}(r)\,\sin\,m\phi]$$
$$\Phi(r,\,\theta,\,\phi) = \sum_{l=0}^{\infty} \sum_{m=0}^{l} P_{lm}(\cos\,\theta) [C_{lm}(r)\,\cos\,m\phi + D_{lm}(r)\,\sin\,m\phi]$$

-> to get the coefficients using particle information

$$\begin{pmatrix} A_{lm}(r) \\ B_{lm}(r) \\ C_{lm}(r) \\ D_{lm}(r) \end{pmatrix} = N_{lm} \sum_{n=0}^{\infty} \tilde{A}_{nl} \begin{pmatrix} \tilde{\rho}_{nl}(r) \\ \tilde{\rho}_{nl}(r) \\ \tilde{\Phi}_{nl}(r) \\ \tilde{\Phi}_{nl}(r) \end{pmatrix} \sum_{k} m_{k} \tilde{\Phi}_{nl}(r_{k}) P_{lm}(\cos \theta_{k}) \begin{pmatrix} \cos m\phi_{k} \\ \sin m\phi_{k} \\ \cos m\phi_{k} \\ \sin m\phi_{k} \end{pmatrix}$$

-> to get acceleration

$$a_{r}(r, \theta, \phi) = -\sum_{l=0}^{\infty} \sum_{m=0}^{l} P_{lm} (\cos \theta) [E_{lm}(r) \cos m\phi + F_{lm}(r) \sin m\phi] ,$$

$$a_{\theta}(r, \theta, \phi) = -\frac{1}{r} \sum_{l=0}^{\infty} \sum_{m=0}^{l} \frac{dP_{lm}(\cos \theta)}{d\theta} [C_{lm}(r) \cos m\phi + D_{lm}(r) \sin m\phi] ,$$

$$a_{\phi}(r, \theta, \phi) = -\frac{1}{r} \sum_{l=0}^{\infty} \sum_{m=0}^{l} \frac{mP_{lm}(\cos \theta)}{\sin \theta} [D_{lm}(r) \cos m\phi - C_{lm}(r) \sin m\phi] ,$$

-> to get the coefficients

$$\begin{bmatrix} E_{lm}(r) \\ F_{lm}(r) \end{bmatrix} = N_{lm} \sum_{n=0}^{\infty} \tilde{A}_{nl} \frac{d}{dr} \tilde{\Phi}_{nl}(r) \sum_{k} m_{k} \tilde{\Phi}_{nl}(r_{k}) P_{lm} \left(\cos \theta_{k} \right) \left(\frac{\cos m\phi_{k}}{\sin m\phi_{k}} \right)$$

where
$$\tilde{A}_{nl} \,\tilde{\rho}_{nl}(r) = -\frac{(n+2l+3/2)}{\pi^{1/2}} C_n^{(2l+3/2)} (\xi) \frac{\left[\Pi_{2l+2}^{4l+2}\right]^2}{\Pi_{n+1}^{n+4l+2}} \frac{r^{l-1}}{(1+r)^{2l+3}}$$

 $\tilde{A}_{nl} \,\tilde{\Phi}_{nl}(r) = 2\pi^{1/2} (n+2l+3/2) \frac{C_n^{(2l+3/2)}(\xi)}{K_{nl}} \frac{\left[\Pi_{2l+2}^{4l+2}\right]^2}{\Pi_{n+1}^{n+4l+2}} \frac{r^l}{(1+r)^{2l+1}}$
 $\tilde{A}_{nl} \frac{d}{dr} \tilde{\Phi}_{nl}(r) = \tilde{A}_{nl} \,\tilde{\Phi}_{nl}(r) \left[\frac{l}{r} - \frac{2l+1}{1+r} + \frac{4(2l+3/2)}{(1+r)^2} \frac{C_{n-1}^{(2l+5/2)}(\xi)}{C_n^{(2l+3/2)}(\xi)}\right]$

<Density map from particle distribution>

<Density map using multipole expansion>

Multipole Expansion for the Disk Component

2-dimensional cylindrical term (Aoki & Iye 1978)

-> a basis set

$$\begin{cases} \mu(R,\phi) = \sum_{nm} A_{nm} \mu_{nm}(R,\phi) \\ \Phi(R,\phi) = \sum_{nm} A_{nm} \Phi_{nm}(R,\phi) \end{cases} \text{ where } \begin{cases} \mu_{nm}(R,\phi) = \frac{Ma}{R_a^3} \frac{(2n+1)}{2\pi} P_{nm}(\xi) \exp(im\phi) \\ \Phi_{nm}(R,\phi) = -\frac{GM}{R_a} P_{nm}(\xi) \exp(im\phi) \end{cases} \text{ where } \xi \equiv \frac{R^2 - a^2}{R^2 + a^2} \frac{R^2 - a^2$$

$$= \frac{Ma}{R_a^3} \sum_{n,m} \varepsilon_m \frac{2n+1}{\pi} P_{nm}(\xi) \frac{(n-m)!}{(n+m)!} \left[I_c \cos(m\phi) + I_s \sin(m\phi) \right]$$

$$\Phi(R,\phi) = -\frac{GM}{R_a} \sum_{n,m} \varepsilon_m P_{nm}(\xi) \frac{2(n-m)!}{(n+m)!} \left[I_c \cos(m\phi) + I_s \sin(m\phi) \right]$$

-> to get the coefficients

$$I_{c,nm} = \frac{a}{M} \iint \frac{\mu(R', \phi')}{R'_a} P_{nm}(\xi') \cos(m\phi') R' d\phi' dR'$$
$$I_{s,nm} = \frac{a}{M} \iint \frac{\mu(R', \phi')}{R'_a} P_{nm}(\xi') \sin(m\phi') R' d\phi' dR'$$

-> to get acceleration

$$\begin{cases} a_R(R,\phi) = \frac{GMR}{R_a^3} \sum_{n,m} \varepsilon_m \left[\frac{4a^2}{R_a^2} \frac{dP_{nm}(\xi)}{d\xi} - P_{nm}(\xi) \right] \frac{2(n-m)!}{(n+m)!} \left[I_c \cos(m\phi) + I_s \sin(m\phi) \right] \\ a_\phi(R,\phi) = \frac{GM}{R_a R} \sum_{n,m} \varepsilon_m P_{nm}(\xi) \frac{2(n-m)!}{(n+m)!} m \left[I_s \cos(m\phi) - I_c \sin(m\phi) \right] \end{cases}$$

Multipole Expansion for the Disk Component

<Density map from particle distribution>

<Density map using multipole expansion>

Thick Disk Approximation

We need to correct a_R and also assign a_z caused by the disk component.

: by thick disk approximation (Binney & Tremaine 2008)

2D razor-thin disk

$$\Phi(R,0) = -4G\Sigma_0 \int_0^R da \, \frac{aK_1(a/R_d)}{\sqrt{R^2 - a^2}} = -\pi G\Sigma_0 R \Big[I_0(y) K_1(y) - I_1(y) K_0(y) \Big]$$

where $K_0 \ K_2 \ I_0 \ I_1$ are Bessel functions, and $y \equiv \frac{R}{2R_d}$

3D exponential thick disk

$$\Phi(R,z) = -\frac{4G\Sigma_0}{R_d} \int_{-\infty}^{\infty} \mathrm{d}z' \,\zeta(z') \int_0^{\infty} \mathrm{d}a \,\sin^{-1}\left(\frac{2a}{\sqrt{+}+\sqrt{-}}\right) a K_0(a/R_d)$$

where $\sqrt{\pm}\equiv\sqrt{z^2+(a\pm R)^2}\qquad \rho(R,z)=\Sigma(R)\zeta(z)$

Acceleration Profiles

Hydrodynamics in the Realistic Galactic Potential

Based on Gadget-2 (Springel 2005)

- gravitational accelerations by the galactic potentials using multipole expansions
- <u>radiative cooling</u> for a gas with a solar metallicity for a range of 10<T/K<10⁸
 - & <u>uniform heating</u> from far-ultraviolet radiation of 100 Habing field (Habing 1968)
 - : using CLOUDY 90 package (Ferland et al. 1998)
- star formation as a single stellar population of Kroupa mass function (Kroupa 2001)
- <u>supernovae feedback</u> following stellar evolutionary model of Hurley, Pols & Tout (2000)

Advantages of using multipole expansions

- calculation time is <u>40~50 times faster</u> than live particles
- easy to get acceleration for any shapes of the galactic potential
- easy to change elongation, orientation, total mass, scale, etc.
- able to describe evolution of the realistic galactic potential as time

Test Run – without spiral arms

In case of a snapshot <u>without spiral arms</u> + pattern speed of 45 km/s/kpc 10⁵ gas particles following exponential density profile

Test Run – without spiral arms

Bar strength measured by Q parameter of $Q_b \equiv \frac{F_T(r,\phi)}{F_R(r)}\Big|_{max}$

Higher Q value : increasing expansion coefficient of m=2 of the axi-symmetric bulge

Test Run – without spiral arms

Bar strength measured by Q parameter of $Q_b \equiv \frac{F_T(r,\phi)}{F_R(r)} \Big|_{ma}$

Higher Q value : increasing expansion coefficient of m=2 of the axi-symmetric bulge

Test Run – with spiral arms

Test Run – star formation

Most of gas particles are distributed near ~10⁴ K or equilibrium temperature.

Stars are formed when n_H > 100 cm⁻³, T < 100 k $\nabla \cdot \mathbf{v}$ < 0.

Future Work

Formation/evolution of nuclear ring

- -> by different bar strength and/or existence of the spiral structures
- -> origin of gas in the nuclear region (gas inflow from the galactic disk)
- -> further inward migration of gas from CMZ to CND
- -> star formation rate, star formation history in the nuclear region
- -> nuclear bulge growth

With more realistic galactic potential

- -> series of simulation snapshot, interpolating expansion coefficients
- -> nested bar, fluctuating motions in the CMZ, twisted nuclear ring, etc.