The First Stars (and SMBHs)

protostar + H2 disk

HII regions

Takashi Hosokawa (Univ. of Tokyo)

15.Sep.2014 EANAM6 @Suwon
The First Star Formation

Form stars with the fixed initial conditions (well-defined problem!)

CMB → density fluctuation in the early universe

the standard cosmology predicts when and where the first stars should form

- Dark matter large-scale structure grows by gravitational instability.
- Evolution of baryons: gas dynamics, chemistry, radiative processes...

Birth place of the first star

“mini-halo” (Tvir ∼ = 3000K)

star formation process

The first stars
Cosmological simulations show that the first star forms in less than 1 billion year after the Big-Bang, as a result of the large-scale structure formation.

Yoshida, Omukai & Hernquist (2008)
grav. collapse of gas cores \Rightarrow mass accretion onto the protostars

Yoshida, Omukai & Hernquist (2008)

10^{-2} \, M_\odot$ protostar surrounded by \(>10^{3} \, M_\odot \) gas envelope

The stellar final mass is fixed when the mass accretion ceases.
Key Questions

What is the typical mass of the first stars, resulting from the evolution in the accretion phase? How massive are they? What is their mass distribution?

Study what happens in the accretion phase to answer these questions.
Evolution in Accretion Phase

Expected acc. rate: \[\dot{M} \sim \frac{M_{J}}{t_{ff}} = \frac{c_{s}^{3}}{G} \sim 7 \times 10^{-4} M_{\odot}/\text{yr} \left(\frac{T}{300 \text{ K}} \right)^{3/2} \]

With this rapid mass accretion, the entire cloud could accrete onto the star in its lifetime (\simMyr) \[\Rightarrow M_{*} \sim 1000M_{\odot} \]

- UV stellar feedback (e.g., McKee & Tan 08)

Formation of an HII region + photoevaporation of the disk \[\Rightarrow M_{*} \sim 150M_{\odot} \]
Direct Simulation in 2D

TH+11, 12; Hirano, TH et al. 14

➢ Acc. rate is significantly reduced by the stellar UV feedback
➢ Mass accretion is shut off when the stellar mass is $\sim 43 M_\odot$
You have to care about totally different scales simultaneously.

Gas inflow from an envelope (∼pc)
+ hydro + self-gravity
+ chemistry
+ radiation transfer

Protostar (∼R_☉)
+ 4 stellar structure eqs.
+ mass accretion
+ nuclear fusion, convection

Combining RHD simulations and stellar evolution calculations makes the problem solvable.
Stellar Evolution and Feedback

Early phase:
(accretion heating) \(> \) (radiation cooling)

Late phase:
(radiation heating) \(> \) (accretion heating)

Later contraction phase

Stellar radius ↓

\(T_{\text{eff}} \) ↑ · UV emissivity ↑

Feedback operates when the stellar radius has sufficiently decreased.
Forming 100 First stars

Pick up a hundred of the star-forming clouds found in cosmological simulations. The later evolution until the stellar mass is fixed is followed by 2D RHD simulations (Hirano, TH et al. 2014)

The UV feedback finally shuts off the mass accretion in all the cases
lots of $M_* < 100 \, M_\odot$ stars, but also with $M_* > 100 \, M_\odot$ stars
(also see Susa, Hasegawa & Tominaga 14)

Stellar mass is higher with weaker rotation and/or higher mass of the clouds.
The first stars end their lives with supernova explosion.

Stars born from the polluted gas have the same abundance patterns as the supernova progenitors.

Heavy elements generated in the stellar interior are scattered.

Galactic metal-poor stars: Messenger from the early universe.

No signatures of PISNe (\sim a few \times 100M_\odot). This favors the ordinary massive stars which cause the CCSNe.
Signature of Very Massive First Stars?

Aoki+14, Science

- low-mass metal-poor star SDSS J1820.5-093939.2
- abundance pattern very different from other metal-poor stars
- CCSN cannot explain the pattern
- a very massive star causing PISN (\(> 140 \, M_\odot\)) is rather favored as a progenitor
More Challenges in 3D

The circumstellar disk becomes gravitationally unstable and fragments.

Multiple protostars could form

\[\downarrow \]

Accretion rate onto each protostar: reduced (?)

\[\downarrow \]

Final stellar masses: reduced (?)
Another 3D effect: Episodic Accretion

Mass accretion through the gravitationally-unstable disk is very time-dependent. Even if the disk suffers from fragmentation, the fragments rapidly migrate inward and merge with the central star.

(Vorobyov+13)

How this effect affects the final stellar mass?
Accretion Burst Makes A Protostar Swell

An experiment: put a short accretion burst on a 40M\(_\odot\) star. 0.1M\(_\odot\)/yr for 30/100 years, 10\(^{-3}\)M\(_\odot\)/yr after that.

The star swells up with the short accretion burst (R\(_*\) \sim 10AU). It takes long time (thousand years) for contraction.

+ reduce the UV emissivity (weaken the UV feedback)
+ make the stellar merger easy

The final stellar mass is increased(?)
Feedback in 3D (TH+ in prep.)
UV feedback (formation of an HII region + photoevaporation) does operate in 3D and shuts off the stellar growth in mass.

(also see Stacy+12; Susa 13)
Summary

How massive were the first stars?

+ Stellar radiative feedback regulates the mass accretion and determines the final stellar mass

+ Lots of “ordinary” massive stars ($M_* < 100 \, M_\odot$) but still with a number of very massive ($M_* > 100M_\odot$) stars → seeding SMBHs in the early universe?

+ 3D effects reduce or increase the final stellar mass? (fragmentation, mergers, episodic accretion, and UV feedback)
Additional pages
Very Very Massive Stars: still needed?

Age of the universe at $z \sim 7$: 0.77 Gyr. Get it before this. Very very massive stars might be preferred to achieve this.
Differences from the Galaxy

Zero metallicity (NO metal and dust): different thermal / chemical processes

(e.g., Palla et al. 83, Galli & Palla 98)

← gas cooling processes
H₂ line cooling at T < 10000 K

(CII, OI, CO, dust cooling etc. @ Galaxy)

H₂ formation

- H⁻ channel: e catalyst (n < 10⁸ cm⁻³)
 \[H + e \rightarrow H⁻ + γ, \quad H⁻ + H \rightarrow H₂ + e \]

- 3-body reaction (n > 10⁸ cm⁻³)
 \[3 \text{H} \rightarrow H₂ + \text{H} \]

(formation on dust grain surface @ Galaxy)
Cosmological initial setting (data from Yoshida+09)

Hosokawa+11 Science
Why mass accretion ceases

Gas pressure excess within the HII region

outward pressure gradient within the HII region (due to the evaporating flow)
→ the same pressure gradient forms even behind the disk
→ shutting off the gas supply from the envelope to the disk
→ photoevaporation of the isolated disk
In all the cases, the stellar final mass is fixed soon after the star arrives at the ZAMS stage.

Stellar UV feedback operates after the late KH contraction stage.

30% rotation $\alpha_0 = 0.6$
With Different Acc. Rates

```
stellar mass (M_☉)

---

mass-radius relation: R_★ \propto M_★^{0.5}, which is independent of different mass accretion rates

"supergiant protostar" stage with the rapid mass accretion of > 0.01 M_☉/yr
```
Physics

\[L_* = 4\pi R_*^2 \sigma T_{\text{eff}}^4 \]

stellar luminosity: \(L_* \)

\[L_* \approx L_{\text{Edd}} \propto M_* \]

nearly constant effective temperature

\[T_{\text{eff}} \approx 5000K \]

(strong T-dependence of H- opacity)

(ref. Hayashi track)

\[R_* \approx 2.6 \times 10^3 R_\odot \left(\frac{M_*}{100 \, M_\odot} \right)^{1/2} \]

good agreement with the numerical results
Diversity... why?

With the higher acc. rates,

+ the stellar mass is higher

+ the star approaches the ZAMS stage at the higher stellar mass

(UV feedback works near the ZAMS stage)

Rapid mass accretion changes the stellar evolution
Key parameters: cloud mass & spin

- Weaker rotation
- More massive gas cloud

Higher stellar mass

Diversity of the stellar masses comes from that of the gas clouds.

Diversity of the gas clouds comes from cosmology.
Stellar mass (weekly) depends on the properties of dark halos.

- higher redshift
- more massive dark halo
 ➔ higher stellar mass

Cosmology sets the different conditions for forming the primordial gas clouds.
Mass Distribution in 3D
Susa, Hasegawa & Tominaga 14

stellar FUV feedback:
destruction of H2 molecules

More lower-mass stars because of the disk fragmentation
(compared to Hirano+14)

Abundance of H2 molecules

Y_{H2}

10^8

10^{-6}

10^{-4}

1 AU

10^4 AU

with ~ 60 gas clouds
Another case with disk fragmentation

fragments rapidly falls onto the star (type-I migration) → the final stellar mass is not always reduced
Disk Fragmentation and Merger

frequent fragmentation, but followed by lots of mergers

Final stellar mass should be determined with the balance between these competing effects (+UV feedback)
Stellar Evolution + Variable Accretion

+ Very-time dependent mass accretion with the angular momentum transport in a gravitationally unstable disk
+ Stellar evolution is simultaneously solved with the variable mass accretion
3D効果: Episodic Accretion

原始星へのガス降着率は、はげしく時間変動する (e.g., Vorobyov+13) 高分解能ではより激しい時間変動

Mesh数 x 4

Mesh数 x 2