Turbulence (and Shock Waves) in Clusters of Galaxies

Dongsu Ryu (Ulsan National Institute of Science and Technology, Korea) Hyesung Kang (Pusan National University, Korea), Jungyeon Cho (Chunganam National University, Korea),

etc

September 15-19, 2014

6th EANAM

The large-scale structure of the universe

\rightarrow the cosmic web

simulated matter distribution

September 15-19, 2014

6th EANAM

Clusters of _ galaxies

aggregates of galaxies, which are the largest known -> gravitationally bound objects to have arisen thus far in the process of cosmic structure formation

Coma Cluster

in X-ray <- hot gas of T ~ 8 keV

The intracluster \rightarrow medium (ICM)

the superheated plasma with T ~ a few to several keV, presented in clusters of galaxies

September 15-19, 2014

6th EANAM

Physical quantities in clusters of galaxies $L \sim a \text{ few Mpc} \sim 10^7 \text{ lyrs}$ size of clusters $n \sim 10^{-2} \,\mathrm{cm}^{-3}$ density of baryonic matter $v \sim \text{several} \times 10^2 \text{ km/s}$ flow velocity $T \sim 10^8 \,{\rm K}$ gas temperature $B \sim a \text{ few } \mu G$ magnetic fields Energetics gas thermal energy gas kinetic energy cosmic-ray energy magnetic energy

 $E_{\text{thermal}} \sim 10^{-10} \text{erg/cm}^3$ $E_{\text{kinetic}} \sim 10^{-11} \text{erg/cm}^3$ $E_{\text{cosmic-ray}} \sim \text{a few} \times 10^{-12} \text{erg/cm}^3$ $E_{\text{magnetic}} \sim \text{a few} \times 10^{-12} \text{ erg/cm}^3$ intracluster media contain plasmas with $\beta \sim 100 \left(\beta \equiv \frac{P_{\text{gas}}}{D}\right)$

September 15-19, 2014

6th EANAM

Some Evidence for turbulence in clusters

- pressure fluctuations in Coma (Schuecker et al 2004) $\Delta P/P \sim 0.1$

n ~ 1/3 - 7/3 ($P_k \sim k^{-n}$) -> consistent to Kolmogorov

- X-ray surface brightness fluctuations in Coma (Churazov et al 2011) $\Delta \rho / \rho \sim 0.1$

n ~ 2 -> steeper than Kolmorogov (shock-dominated ?)

- line broadening limit in A1835 (Sanders et al 2010)

 $\Delta v < 274$ km/sec -> $E_{turb} / E_{tot} <~ 0.1$

- patchy Faraday rotation distributions in clusters (Murgia et al 2004)

n ~ 0 for B -> broken power-law?

- and etc ...

September 15-19, 2014

6th EANAM

Kyung Hee Univ., Korea

~?)

XMM images of Coma

analyzed to get the power spectrum of gas density fluctuations

(Churazov et al. 2011)

September 15-19, 2014

6th EANAM

Some Evidence for turbulence in clusters

- pressure fluctuations in Coma (Schuecker et al 2004) $\Delta P/P \sim 0.1$

n ~ 1/3 - 7/3 ($P_k \sim k^{-n}$) -> consistent to Kolmogorov

- X-ray surface brightness fluctuations in Coma (Churazov et al 2011) $\Delta \rho / \rho \sim 0.1$

n ~ 2 -> steeper than Kolmorogov (shock-dominated ?)

- line broadening limit in A1835 (Sanders et al 2010)

 $\Delta v < 274$ km/sec -> $E_{turb} / E_{tot} <~ 0.1$

- patchy Faraday rotation distributions in clusters (Murgia et al 2004)

n ~ 0 for B -> broken power-law?

- and etc ...

→ Turbulence in ICMs is subsonic! Kolmogorov?

September 15-19, 2014

6th EANAM

Kyung Hee Univ., Korea

~?)

Turbulence in astrophysical environments II

1. Turbulence in the interstellar medium (ISM) with $\beta \sim 1$ (strong guiding field $(B_0 > \sim \delta B)$)

2. Turbulence in the intracluster medium (ICM) with $\beta >> 1$ (negligible guidin g field($B_0 \ll \delta B$))

$$\left(\beta \equiv \frac{P_{\rm gas}}{P_{\rm magnetic}}\right)$$

Two turbulences should have different properties!

September 15-19, 2014

6th EANAM

Goldreich & Sridhar model for turbulence

for strong regular field $(B_0 >> \delta B)$

in the incompressible limit $(\delta \rho << \rho_0)$

• applicable, e.g., to the turbulence in the ISM with $\beta \sim 1$

Goldreich & Sridhar (1995) considered the dynamics of Alfvenic wave packets in the strong turbulence limit.

September 15-19, 2014

6th EANAM

September 15-19, 2014

6th EANAM

2. energy cascade of Alfven waves

$$\mathcal{E}_{\text{cascade}} = \frac{b_l^2}{t_{\text{cascade}}} = \text{constant}$$
$$t_{\text{cascade}} \sim t_{\text{interaction}} = \frac{l_{\parallel}}{B_0} \sim \frac{l_{\perp}}{b_l} \quad \text{strong turbulence}$$

September 15-19, 2014

6th EANAM

Goldreich & Sridhar model

critical balance

$$\frac{l_{\perp}}{l_{\parallel}} \sim \frac{b_l}{B_o}$$

energy cascade

$$\varepsilon_{\text{cascade}} = \frac{b_l^2}{b_l / l_\perp} = \text{constant}$$

September 15-19, 2014

6th EANAM

Turbulence in intracluster media

- It is difficult to produce strong coherent magnetic fields in the IGM before the formation of the large-scale structure of the universe, but rather it would be reasonable to assume that week, random seed fields were created.
- If seed fields exist, turbulence can amplify magnetic fields (the small-scale dynamo).
- Origin of seeds for comic magnetic fields is yet uncertain.

after turbulent amplification

$$B_0 \ll \delta B$$

Drivers of turbulence in clusters

- <u>formation of large-scale structure:</u> <u>shocks from merger, accretion, ...</u>
- AGN outflows, galactic winds, ...
- MTI, buoyancy instabilities, ...

wide range of injection scales: microscopic scales to ~ 1 Mpc

6th EANAM

Kyung Hee Univ., Korea

Tregillis, Jones & Ryu (2004)

September 15-19, 2014

6th EANAM

Mach number distribution of shocks around a cluster complex

(Ryu et al 2003)

September 15-19, 2014

6th EANAM

Vorticity generated at cosmological shocks

September 15-19, 2014

6th EANAM

Turbulence in clusters: AMR simulations

temperature distribution in a merging cluster

Vazza et al (2010)

Turbulence energy

assuming that all the energy of vortical motions goes to turbulence

 $M_{turb} < 1$ (subsonic turbulence) inside and outskirts of clusters $E_{turb}/E_{therm} \sim 0.1 - 0.3$ inside and outskirts of clusters -> agrees with obs. $M_{turb} \sim 1$ (transonic turbulence) in filaments

turbulence in clusters is subsonic!

September 15-19, 2014

6th EANAM

Turbulence + magnetic field

→ Magnetohydrodynamic turbulence

Magnetic fields can be amplified by turbulence from weak seed fields

→ Turbulence dynamo or small-scale dynamo

September 15-19, 2014

6th EANAM

Time evolution of kinetic and magnetic energies

September 15-19, 2014

6th EANAM

September 15-19, 2014

6th EANAM

September 15-19, 2014

6th EANAM

Viscosity and resistivity the ICM

kinetic viscosity
$$\nu \sim \nu_{p-p}^{\text{therm}} l_{p-p} \sim \frac{l_{p-p}^2}{t_{p-p}}$$
 (?)
or substantially smaller ?
resistivity $\eta \sim \frac{(c/\omega_p)^2}{t_{e-p}} \left(\omega_p = \left(\frac{4\pi n_e e^2}{m_e} \right)^{1/2} \right)$ (?)
much smaller than viscosity?
 \longrightarrow high magnetic Prandtle number ?
 $P_m = \frac{\nu}{\eta} \sim 10^{20} \text{ or larger }?$

September 15-19, 2014

6th EANAM

Conclusions: Why simulation of turbulence in clusters?

- Turbulence amplifies and transports magnetic fields.
- Turbulence transports entropy, metals, cosmic rays, etc.
- Turbulence is a key to shocks and turbulent acceleration of cosmic rays.
- Turbulent pressure contributes to the support of the ICM, so its presence influences HSE mass estimates.

in turn

- Turbulence is affected by shocks, magnetic fields, dissipations, and etc.

in the end

- Understanding turbulence is important in understanding physics in. intracluster media, and yet to be done.
- Numerical simulation is a key in understanding turbulence as well as other astrophysical phenomena in intracluster media.

September 15-19, 2014

6th EANAM

Thank you !

September 15-19, 2014

6th EANAM