UNIST

Kiwan Park and Dongsu Ryu

Sunspot, Stellar rotation, Mass loss, Binary evolution...

Sunspot, Stellar rotation, Mass loss, Binary evolution...

→ Commonly interaction of Magnetic field & Conducting fluid is observed.

Sunspot, Stellar rotation, Mass loss, Binary evolution...

→ Commonly interaction of Magnetic field & Conducting fluid is observed.

- 1. What are the <u>origin</u> and <u>evolution</u> of Magnetic field?
- 2. The <u>annihilation</u> of Magnetic field?

Sunspot, Stellar rotation, Mass loss, Binary evolution...

→ Commonly interaction of Magnetic field & Conducting fluid is observed.

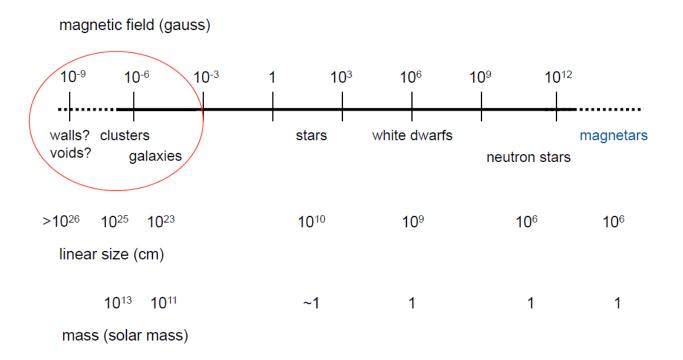
- 1. What are the <u>origin</u> and <u>evolution</u> of Magnetic field?
- 2. The <u>annihilation</u> of Magnetic field?
- → MHD turbulence dynamo & magnetic reconnection

Sunspot, Stellar rotation, Mass loss, Binary evolution...

→ Commonly interaction of Magnetic field & Conducting fluid is observed.

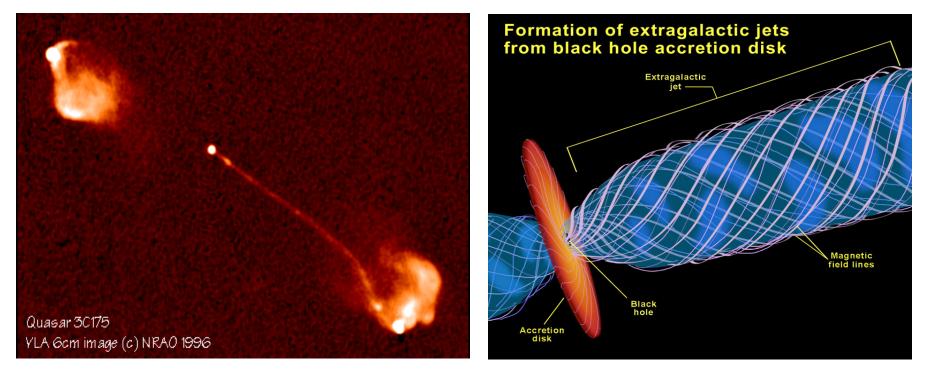
- 1. What are the <u>origin</u> and <u>evolution</u> of Magnetic field?
- 2. The <u>annihilation</u> of Magnetic field?
- → MHD turbulence dynamo & magnetic reconnection
- MHD turbulence converts
 - mechanical energy (such as supernova explosion) to magnetic energy \rightarrow Galactic dynamo occurs.
- Magnetic reconnection converts magnetic energy to thermal or kinetic energy.
- \rightarrow Heating source for the ISM and halo gas

Strength of magnetic field has wide range of magnitude 10^{-9} G - 10^{12} G



More examples Spiral galaxy ~ 10 μG Radio faint galaxy (M31, M33) & milky way galaxy ~ 5 μG Gas rich spiral galaxy (M51) ~ 20-30 μG Starburst galaxy (M82) ~ 50-100 μG

Also magnetic field has huge range of scale Active Galactic Nucleus (AGN) Jet: 3C175



The overall linear size: 212 kpc (6.9×10⁵ light year)

How does the magnetic field grow?

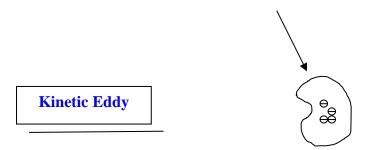
- Large scale dynamo & small scale dynamo

Process of MHD turbulence energy cascade

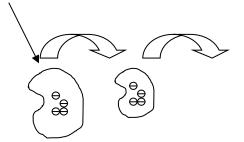
Suppose a bunch of ionized particles (plasmas)

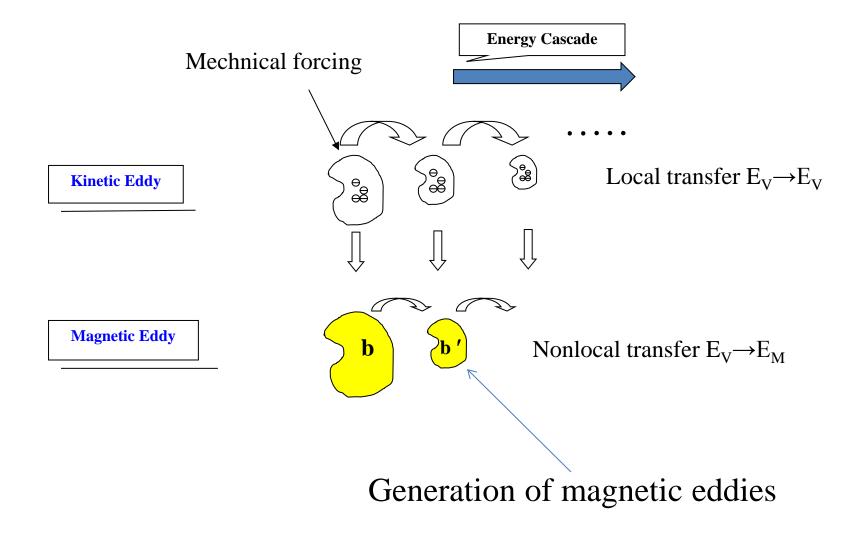
Process of MHD turbulence energy cascade

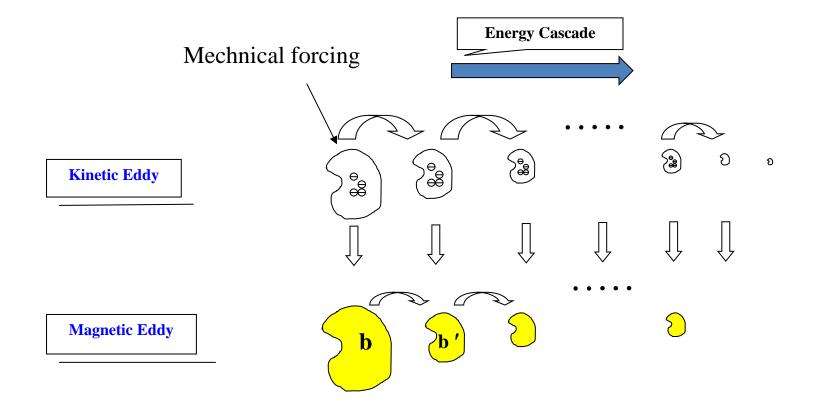
Mechnical forcing

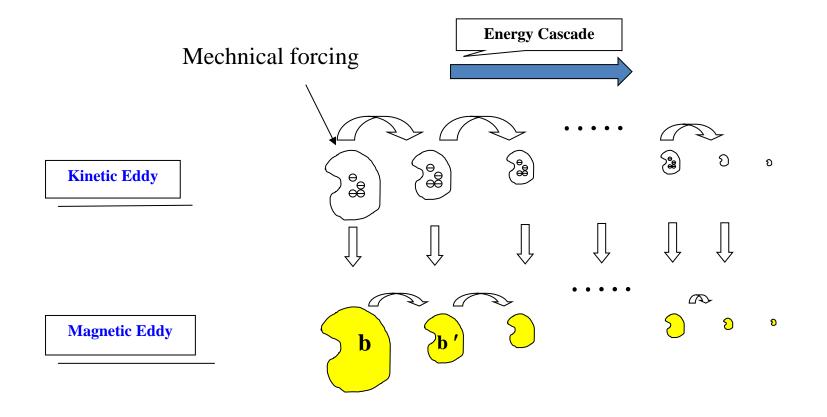


Mechnical forcing

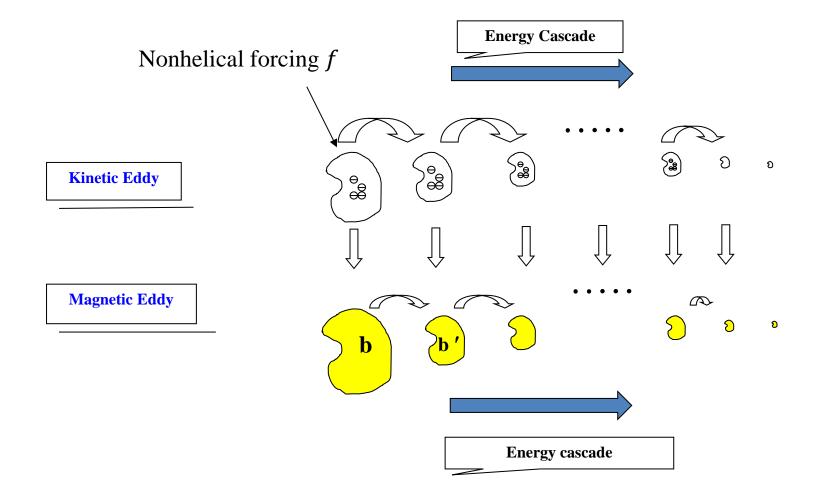






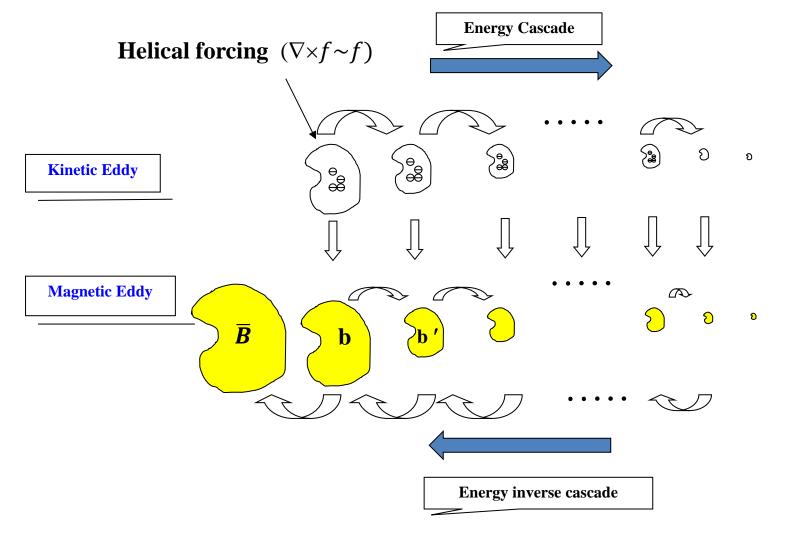


MHD turbulence dynamo (small scale dynamo)



Large→small (small scale dynamo)

MHD turbulence dynamo (large scale dynamo)



Small→Large (Large scale dynamo)

1. Continuity Equation

$$\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \mathbf{V}) = \mathbf{0}$$

1. Continuity Equation

$$\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \mathbf{V}) = \mathbf{0}$$

2. Momentum equation

$$\rho \frac{DV}{Dt} = -\nabla P + \frac{1}{c} J \times B + v \nabla^2 V \quad \left(\frac{D}{Dt} \equiv \frac{\partial \rho}{\partial t} + V \cdot \nabla \right)$$

1. Continuity Equation

$$\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \mathbf{V}) = \mathbf{0}$$

2. Momentum equation

$$\rho \frac{DV}{Dt} = -\nabla P + \frac{1}{c} J \times B + v \nabla^2 V \quad \left(\frac{D}{Dt} \equiv \frac{\partial \rho}{\partial t} + V \cdot \nabla \right)$$

3. Magnetic induction Equation

$$\frac{\partial B}{\partial t} = \nabla \times \left\langle \underbrace{V \times B}_{\text{EMF}} \right\rangle + \eta \nabla^2 B$$

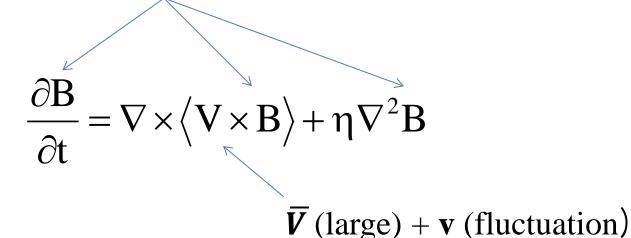
• For the intuitive understanding, we need more simplified magnetic induction equation.

→Mean field (two scale) model is useful

 $V \rightarrow \overline{V}$ (large) + v (fluctuation) $B \rightarrow \overline{B}$ (large) + b (fluctuation)

- Large scale dynamo
 - inverse cascade of E_M (small \rightarrow large scale)

 \overline{B} (large) + b (fluctuation)



- Large scale dynamo
 - inverse cascade of E_M (small \rightarrow large scale)

B (large) + b (fluctuation) $\frac{\partial \mathbf{B}}{\partial t} = \nabla \times \left\langle \mathbf{V} \times \mathbf{B} \right\rangle + \eta \nabla^2 \mathbf{B}$ \overline{V} (large) + v (fluctuation) $\rightarrow \frac{\partial \overline{B}}{\partial t} = \underbrace{\nabla \times \left\langle v \times b \right\rangle}_{A} + \underbrace{(\eta + \beta) \nabla^2 \overline{B}}_{A}$ Diss. Source(small) Elctromotive force (EMF) $\langle v \times b \rangle$

- Large scale dynamo
 - inverse cascade of E_M (small \rightarrow large scale)

B (large) + b (fluctuation) $\frac{\partial \mathbf{B}}{\partial t} = \nabla \times \left\langle \mathbf{V} \times \mathbf{B} \right\rangle + \eta \nabla^2 \mathbf{B}$ \overline{V} (large) + v (fluctuation) $\rightarrow \frac{\partial \mathbf{B}}{\partial t} = \nabla \times \langle \mathbf{v} \times \mathbf{b} \rangle + (\eta + \beta) \nabla^2 \overline{\mathbf{B}}$ Diss. Source(small)

When field is helical ($\nabla \times b \sim b$), EMF can be represented by α , β

- Large scale dynamo
 - inverse cascade of E_M (small \rightarrow large scale)

 $\overline{B} \text{ (large)} + \mathbf{b} \text{ (fluctuation)}$ $\frac{\partial B}{\partial t} = \nabla \times \langle \mathbf{V} \times \mathbf{B} \rangle + \eta \nabla^2 \mathbf{B}$

 \overline{V} (large) + v (fluctuation)

$$\rightarrow \frac{\partial B}{\partial t} = \underbrace{\nabla \times \langle v \times b \rangle}_{\text{Source(small)}} + \underbrace{(\eta + \beta) \nabla^2 \overline{B}}_{\text{Diss.}}$$
$$\frac{dv}{dt} \sim \langle \overline{J} \times b + j \times \overline{B} \rangle$$

- Large scale dynamo
 - inverse cascade of E_M (small \rightarrow large scale)

 \overline{B} (large) + b (fluctuation)

$$\frac{\partial \mathbf{B}}{\partial t} = \nabla \times \langle \mathbf{V} \times \mathbf{B} \rangle + \eta \nabla^2 \mathbf{B}$$

 \overline{V} (large) + v (fluctuation)

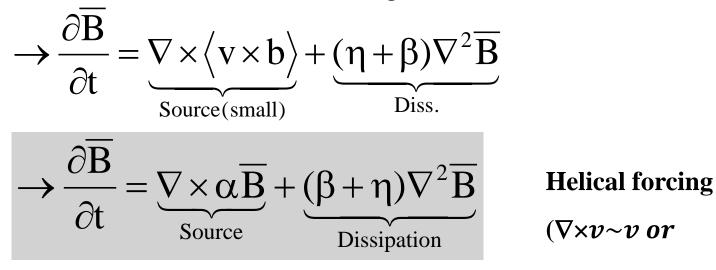
$$\rightarrow \frac{\partial B}{\partial t} = \underbrace{\nabla \times \langle v \times b \rangle}_{\text{Source(small)}} + \underbrace{(\eta + \beta) \nabla^2 \overline{B}}_{\text{Diss.}}$$
$$\frac{dv}{dt} \sim \langle \overline{J} \times b + j \times \overline{B} \rangle \qquad \frac{db}{dt} \sim \nabla \times \langle v \times \overline{B} \rangle$$

- Large scale dynamo
 - inverse cascade of E_M (small \rightarrow large scale)

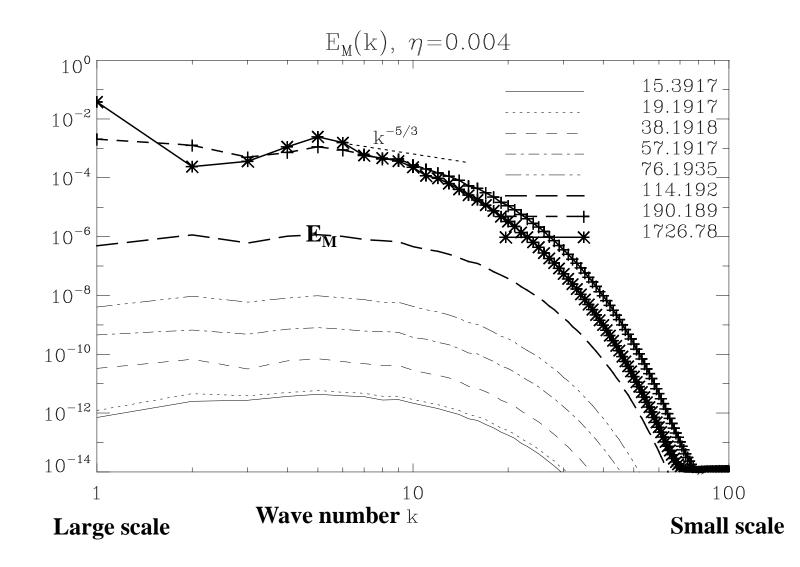
 \overline{B} (large) + b (fluctuation)

$$\frac{\partial \mathbf{B}}{\partial t} = \nabla \times \langle \mathbf{V} \times \mathbf{B} \rangle + \eta \nabla^2 \mathbf{B}$$

 \overline{V} (large) + v (fluctuation)

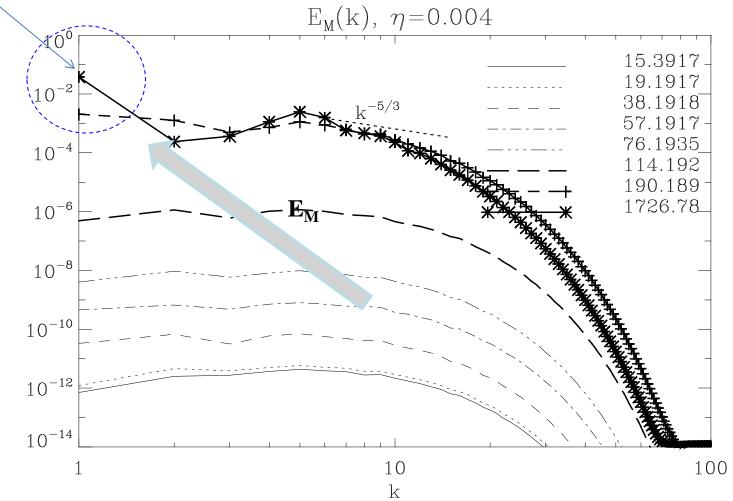


E_M for Large scale dynamo (helical forcing)



E_M for Large scale dynamo (helical forcing)

 \overline{B} (large)



- However, in fact mechanical force like
- **E_V of supernova has 5-15% helicity**
- \rightarrow mostly nonhelical, forward cascade of $E_{\rm M}$ may be dominant \rightarrow small scale dynamo

• Small scale dynamo (nonhelical field)

$$\frac{\partial \mathbf{B}}{\partial t} = \nabla \times \left\langle \mathbf{V} \times \mathbf{B} \right\rangle + \eta \nabla^2 \mathbf{B}$$

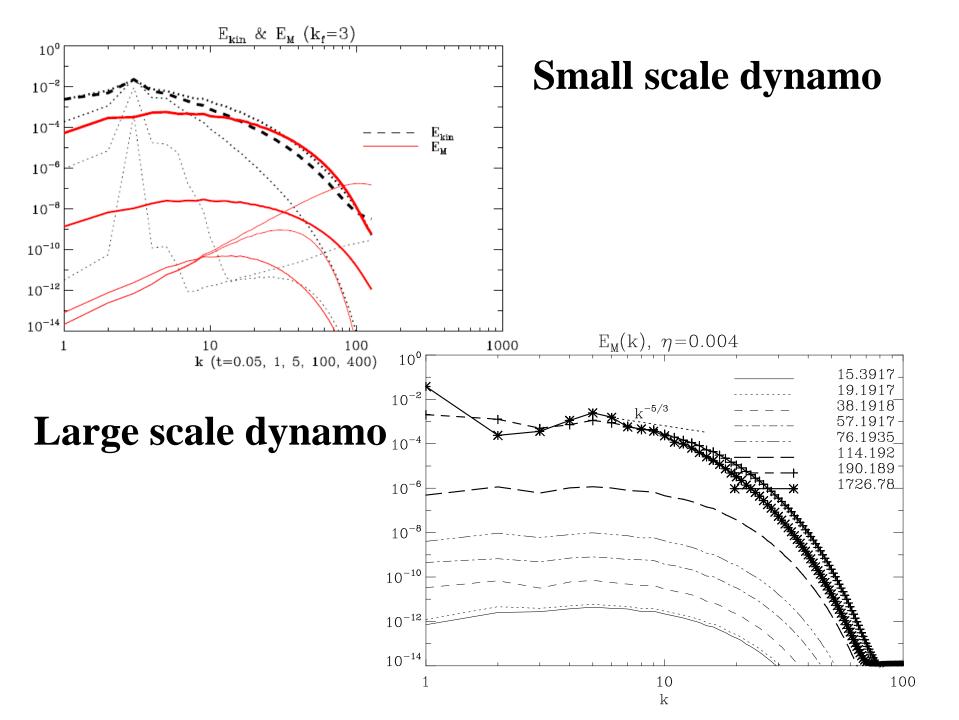
 $= \mathbf{B} \cdot \nabla \mathbf{V} - \mathbf{V} \cdot \nabla \mathbf{B} + \eta \nabla^2 \mathbf{B}$

• Small scale dynamo (nonhelical field)

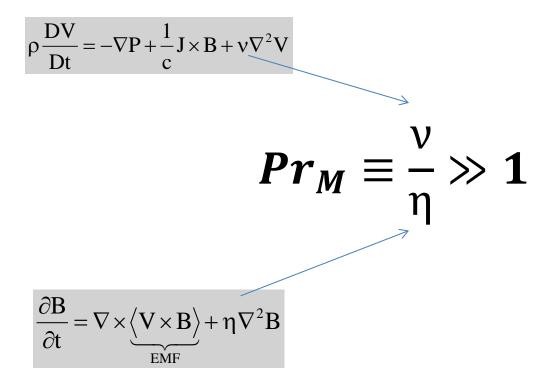
$$\frac{\partial \mathbf{B}}{\partial t} = \nabla \times \langle \mathbf{V} \times \mathbf{B} \rangle + \eta \nabla^2 \mathbf{B}$$
$$= \mathbf{B} \cdot \nabla \mathbf{V} - \mathbf{V} \cdot \nabla \mathbf{B} + \eta \nabla^2 \mathbf{B}$$
$$\rightarrow \mathbf{Kazantsev equation...}$$

assumes
$$\langle vv \rangle = \left(\delta_{ij} - \frac{k_i k_j}{k^2}\right) \kappa$$

- Comparison of large scale & small scale dynamo
 - Magnetic energy spectrum $E_{\rm M}$

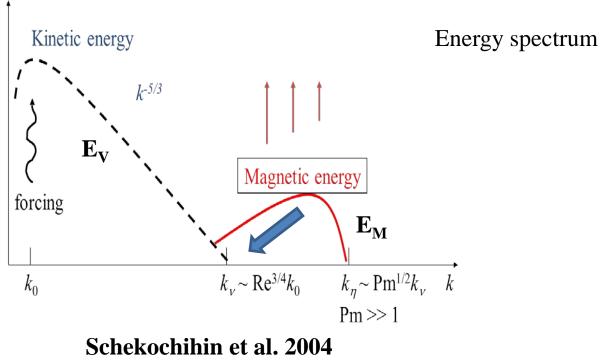


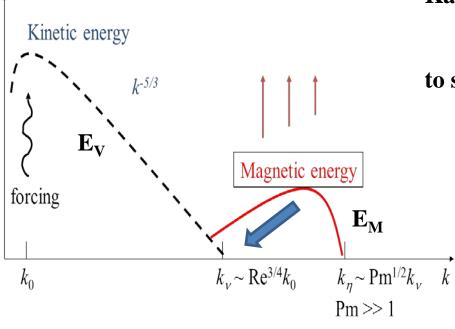
How about the small scale dynamo in high prandtl number? (suitable for warm & partially ionized galaxies ~ 10¹⁴)



• Small scale dynamo in high prandtl number

$$\frac{\partial \mathbf{B}}{\partial t} = \nabla \times \langle \mathbf{V} \times \mathbf{B} \rangle + \eta \nabla^2 \mathbf{B} \qquad \qquad \eta \sim \mathbf{0}$$
$$\sim \mathbf{B} \cdot \nabla \mathbf{V} - \mathbf{V} \cdot \nabla \mathbf{B}$$





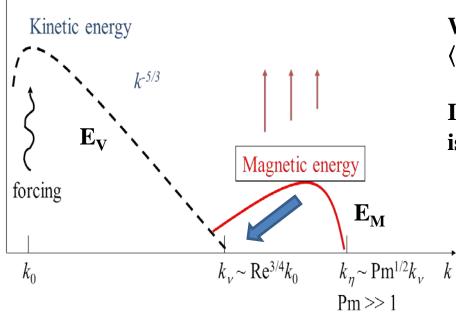
Kazantsev's model assumes

$$\langle vv \rangle = (\delta_{ij} - \frac{k_i k_j}{k^2})\kappa$$

to solve (iterative method)

$$\frac{\partial B}{\partial t} = B \cdot \nabla v - v \cdot \nabla B + \eta \nabla^2 B$$

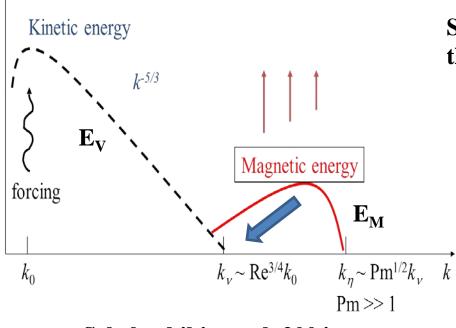
Schekochihin et al. 2004



We don't know when dynamo begins, before $\langle vv \rangle$ or later.

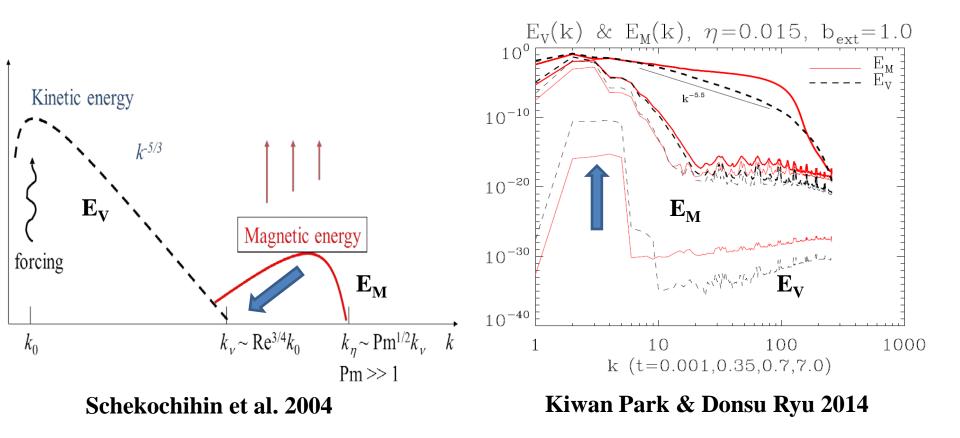
In addition, the high Pr_M means viscosity ν is large. Difficult to form $\langle vv\rangle$

Schekochihin et al. 2004



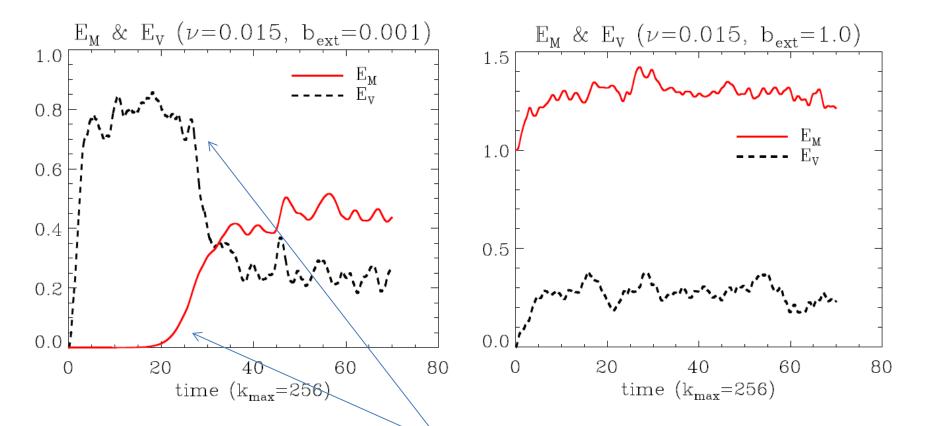
Schekochihin et al. 2004

So, without pre-existing $\langle vv \rangle$, the spectrum is



Influence of strong and weak background magnetic field Background magnetic field B_{ext} affects the evolution of magnetic field profile.

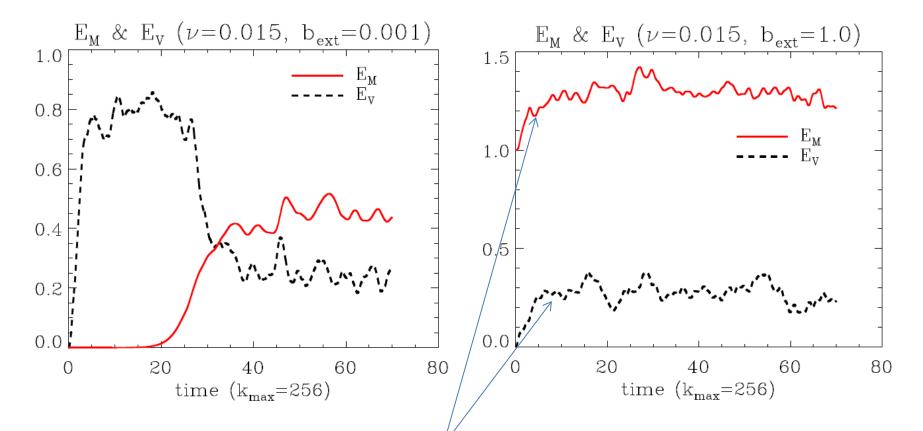
Influence of background field on the evolution of fields



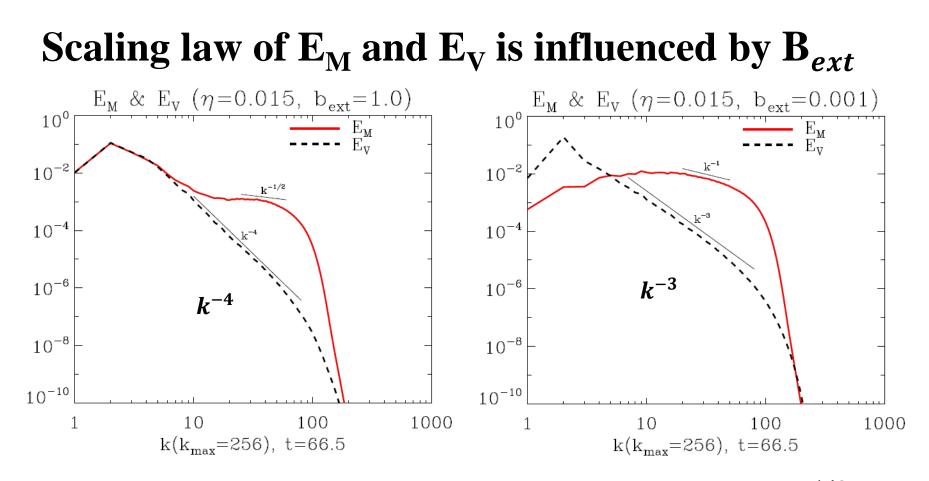
The effect of magnetic pressure $(-\nabla B^2/2)$ and tension $(B \cdot \nabla B)$ is conspicuous with weak $B_{ext}(0.001)$.

$$\rho \frac{DV}{Dt} = -\nabla \left(P + \frac{B^2}{2} \right) + B \cdot \nabla B + \nu \nabla^2 V.$$

Influence of background field on the evolution of fields



But with strong $B_{ext}(1.0)$, the constraint of plasma motion is not clearly shown.



1. Kolmogorov's assumption and the scaling law $(k^{-5/3})$ are not correct in small scale MHD dynamo with high Pr_M . 2. Scaling factor depends on B_{ext}

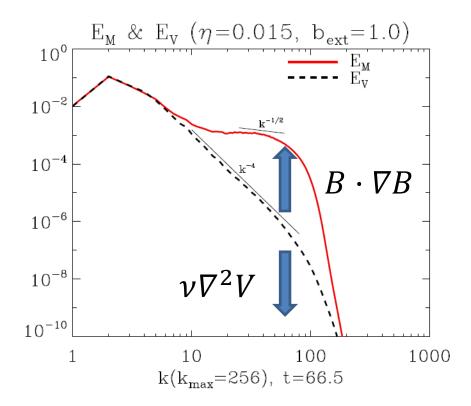
- $E_V(k^{-4})$ and $E_M(k^{-1/2})$ with strong $B_{ext}(1.0)$ - $E_V(k^{-3})$ and $E_M(k^{-1})$ with weak $B_{ext}(0.001)$ How to solve? $\frac{\partial B}{\partial t} = \nabla \times \langle V \times B \rangle + \eta \nabla^2 B \qquad \eta \sim 0$ $\sim B \cdot \nabla V - V \cdot \nabla B$

Dimensional analysis?

 $\frac{\partial \mathbf{B}}{\partial t} = \nabla \times \left\langle \mathbf{V} \times \mathbf{B} \right\rangle + \eta \nabla^2 \mathbf{B}$ $\sim \mathbf{B} \cdot \nabla \mathbf{V} - \mathbf{V} \cdot \nabla \mathbf{B}$ \rightarrow B k V – V k B

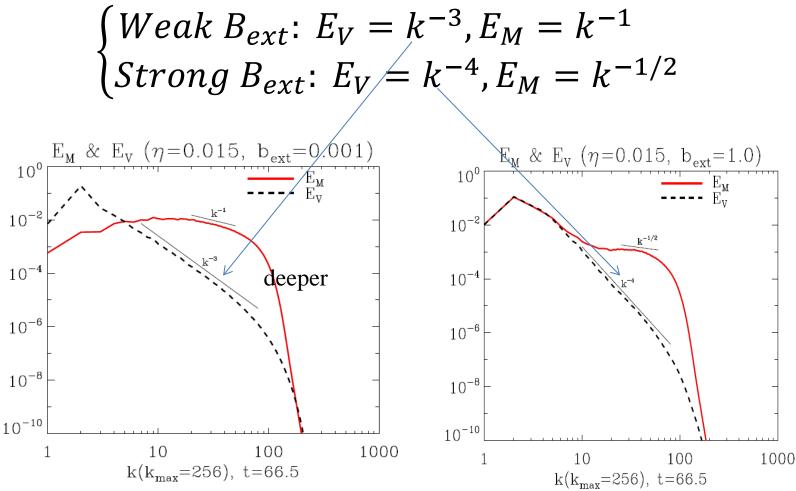
Dimensionally self consistent. Instead...

1. Balance relation \rightarrow **Magnetic tension** \sim **dissipation** $B \cdot \nabla B \sim \nu \nabla^2 V$



- **1. Magnetic tension ~ dissipation** $B \cdot \nabla B \sim \nu \nabla^2 V$
- 2. Magnetic energy transfer rate in stationary state

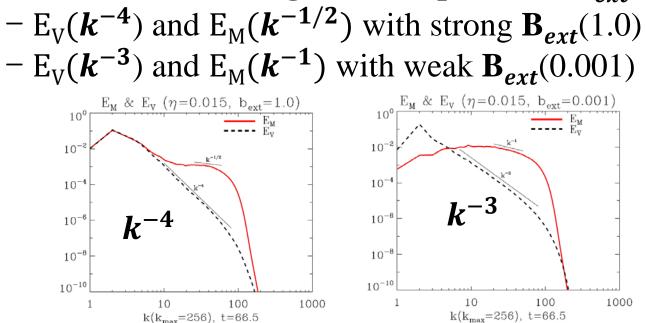
- **1. Magnetic tension ~ dissipation** $B \cdot \nabla B \sim \nu \nabla^2 V$
- 2. Magnetic energy transfer rate in stationary state
- 3. Results



Comparison

1. Cho, Lazarian & Vishiniac 2003 - $E_V(k^{-4})$ and $E_M(k^{-1})$

- **2. Schekochihin et al. 2004** - $E_V(k^{-4})$ and $E_M(k^0)$
- 3. Our results scaling factor depends on B_{ext}



Summary

- 1. MHD turbulence dynamo explains the evolution of magnetic fields
- 2. Magnetic energy cascades inversely (large scale dynamo) or migrates toward small scale (small scale dynamo)
 - mean field theory (α^2 model) & Kazantsev's model
- 3. Small scale dynamo in case of high Pr_M , which is suitable for warm and partially ionized galaxy, E_M in subviscous scale is transferred to the kinetic eddies to extend viscous scale.
- 4. With balance relation and energy transfer rate,

 $E_V(k^{-4} - k^{-3})$ and $E_M(k^{-1} - k^{-1/2})$ depending on B_{ext}