Dust in Molecular Clouds and 3D Model of the ISM

Jiali Zhu (NAOC)

The 6th EAST-ASIAN NUMERICAL ASTROPHYSICS MEETING

Jiali Zhu (NAOC)

Outline

O Focus and Data

- The FIR emission from big grains
- Hi-GAL (The Herschel infrared Galactic Plane Survey)
- GRS (the Galactic Ring Survey): locate the molecular clouds
- O Intermediate Result: Distribution of the FUV field in the Galactic plane
- O The Progress of the 3D Model of the ISMO Future Plan

The 6th EAST-ASIAN NUMERICAL ASTROPHYSICS MEETING

Jiali Zhu (NAOC)

Hi-GAL Project

Hi-GAL: The Herschel infrared Galactic Plane Survey

√70~500 µm mapping: PACS 70, 160 µm; SPIRE 250, 350, 500 µm

✓ Range: the whole Galactic plane, $|b| \le 1^{\circ}$

The 6th EAST-ASIAN NUMERICAL ASTROPHYSICS MEETING

Galactic latitude

Jiali Zhu (NAOC)

From 2D to 3D

2D Observation \longrightarrow SED fitting \longrightarrow G₀ distribution

The 6th EAST-ASIAN NUMERICAL ASTROPHYSICS MEETING

Jiali Zhu (NAOC)

Typical Example of SED Fitting: derive the G_0

Dust grains absorb FUV photons and reemite in FIR wavelength range.

The 6th EAST-ASIAN NUMERICAL ASTROPHYSICS MEETING

Jiali Zhu (NAOC)

G_0 Distribution of the $l=30^{\circ}$ Field

3D Model of the ISM

Based on the G_0 Distribution of the $l=30^{\circ}$ Field

→ 3D model of the ISM: Progress

Application of GPU parallel computing technologies

The 6th EAST-ASIAN NUMERICAL ASTROPHYSICS MEETING

Jiali Zhu (NAOC)

H II Region Catalog (Paladini et al. 2003) in the $l = 30^{\circ}$ Field

名称	l(deg)	b(Jy)	R(kpc) ^a	D(kpc) ^b	$d(\mathrm{pc})$	$n_{e,6~{ m cm}}({ m cm}^{-3})$	$T_{eff}(\rm kK)$	$\log U$
G28.8 - 0.2	28.823	- 0.226	4.5	5.5	3.5	152.7	55	-2.1
G29.0 - 0.6	28.983	- 0.603	5.8	3.4	2.3	152.7	55	-2.1
G29.1 - 0.0	29.136	- 0.042	5.8	11.5	14.4	43.9	60	-0.6
G29.1 + 0.4	29.139	0.431	7.4	13.6	19	41.8	60	-1
G29.2 - 0.0	29.205	- 0.047	5.4	10.9	13.6	49.2	60	-0.4
G30.1 - 0.2	30.069	- 0.160	4.4	8.5	7.4	61.9	60	-0.3
G30.2 - 0.1	30.227	- 0.145	4.4	6.3/8.4	4.7/6.3	147.2/127.5	60	-0.3
G30.3 - 0.0	30.277	- 0.020	4.4	6.2	5	70.5	60	-1.7
G30.4 - 0.2	30.404	- 0.238	4.3	8	8.6	90.5	58	-2.25
G30.5 - 0.3	30.502	- 0.290	4.3	7.3	9.1	68.7	60	-1.65
G30.5 + 0.4	30.467	0.429	5.7	3.6/11	5.6/17.3	59.8/34.2	60	-2.6
G30.6 - 0.1	30.602	- 0.106	4.4	7.3	4.9	158.2	60	-1.05
G30.7 - 0.3	30.694	- 0.261	4.5	8.3	5.3	185.4	60	-1.15
G30.8 - 0.0	30.776	- 0.029	4.6	5.7	7.2	345.2	60	-1.25
G31.0+0.5	31.05	0.48	7.1	12.9	10.5	77.8	60	-2.8
G31.1+0.3	31.13	0.284	4.4	7.3	4.2	132.7	55	-2.25
						1	6	

Distance to the Galactic center Distance to the solar Construct the radiative transfer model using Cloudy

 Compute the G₀ as a function of the column density integrated along the light path for every H II region

HII regions provide the radiation field in the 3D model

The 6th EAST-ASIAN NUMERICAL ASTROPHYSICS MEETING

Jiali Zhu (NAOC)

Part of GRS CO data

(104 clouds in total in the $l = 30^{\circ}$ field ,Roman-Duval et al. 2009)

Index	l(deg)	b(deg)	$\Delta l(deg)$	$\Delta b(deg)$	D(kpc)
1	29.89	-0.06	0.42	0.41	6.78
3	30.79	-0.06	0.32	0.39	6.22
5	30.44	-0.26	0.46	0.47	7.3
7	29.64	-0.61	0.61	0.60	4.85
9	28.84	-0.26	0.50	0.42	5.55
11	28.59	-0.21	0.36	0.65	5.5
13	29.94	-0.76	0.42	0.17	5.35
15	29.14	-0.31	0.30	0.24	6.03
17	29.54	0.19	0.41	0.28	5.07
19	31.29	0.09	0.55	0.39	7.25
21	30.69	0.04	0.39	0.39	5.1
23	29.29	-0.61	0.24	0.43	4.2

These clouds locate the dust associated with molecular clouds to reduce the computational cost

The 6th EAST-ASIAN NUMERICAL ASTROPHYSICS MEETING

Jiali Zhu (NAOC)

 $l = 30^{\circ}$ field overlaid with molecular clouds (translucent ellipses)

The 6th EAST-ASIAN NUMERICAL ASTROPHYSICS MEETING

Jiali Zhu (NAOC)

Model Description

- Divide the 3D space into grid cells
- Put hot stars into cells or fill cells with gas
- ③ Other cells are keeping vacuum

Combined with radiative transfer code and the grid geometry

The 6th EAST-ASIAN NUMERICAL ASTROPHYSICS MEETING

Jiali Zhu (NAOC)

Model description

- Emission from hot stars is absorbed by cells along the light path.
- The absorption depends on the column density integrated along the light path.
- With a certain 3D distribution of the cell density, we can calculate the G_0 absorbed by every cell.
 - G_0 corresponding to column density is pre-calculated by Cloudy

• The absorption is then projected to the Galactic Plane to derive a 2D simulated G_0 map, which varies with the 3D distribution of cell density.

A 3D space with a certain density distribution

We compare the simulated map with the one derived by SED fitting, to find the upper-limit for absorption of dust associated with molecular clouds.

The best fit values of density distribution will minimize the difference between the simulated G_0 map and the "observed" G_0 map.

The 6th EAST-ASIAN NUMERICAL ASTROPHYSICS MEETING

Jiali Zhu (NAOC)

Preliminary Results

Progress: by comparing model predication with observations, we derive the portion of FUV emission absorbed by dust grains associated with molecular clouds in the $l=30^{\circ}$ field at a low grid resolution **Ultimate goal**: automatically invert the 3D distribution of the ISM properties in the Galactic plane from small scale (local) to large scale (global)

significant computational cost in the fitting procedures

The 6th EAST-ASIAN NUMERICAL ASTROPHYSICS MEETING

Jiali Zhu (NAOC)

Spherical Polar Coordinates

Grid cells: 27×151×14

GPU Parallel Computing Technologies

To speed up the fitting procedure

• The G₀ absorption of 4493 cells are computed in parallel on GPU

• We use OpenCL to call the GPU

• One work item of GPU corresponds to one cell

The computing performance of CPU and GPU

Preliminary Fitting Results

Index	$G_{0,\mathrm{model}}$	Standard Deviation	G_0	1 σ error	Criterion
1	6.81	0.18	2.06	0.88	5.3
2	4.21	0.09	1.64	0.31	8.1
3	4.08	0.05	2.03	0.27	7.5
4	3.53	0.07	2.08	0.28	5.1
5	3.55	0.08	2.23	0.29	4.4

Criterion =
$$\frac{|G_{0,\text{model}} - G_0|}{\sqrt{\delta G_{0,\text{model}}^2 + \delta G_0^2}} \le 1$$

The FUV emission at line of sight is absorbed by the dust associated with molecular clouds

The portion of cells with criterion≤1

global consistency

Jiali Zhu (NAOC)

The 6th EAST-ASIAN NUMERICAL ASTROPHYSICS MEETING

Jiali Zhu (NAOC)

Future Plan

I. Upgrade the radiative transfer model

✓ use a 3D radiative transfer model to calculate the dust emission directly

 \checkmark no need to calculate the G_0 distribution

- 2. Improve the resolution of 3D model
- 3. Include more sources, not only HII regions
- This model is under continuous development

Your suggestions and comments are welcome