Turbulence and Origin of Cosmic Magnetic Fields <Turbulence dynamo in clusters and filaments>

Jungyeon Cho (趙, 政衍) (CNU, South Korea)

Cho, Vishniac, Beresnyak, Lazarian, & Ryu 2009 Cho & Yoo (2012; ApJ) Cho (2013; PRD) Cho (2014; submitted)

$B=? \rightarrow$ We need to know turbulence

Nearby Galaxies (2MASS)

Weak seed field
Strong B

Turbulence

Origin of cosmic seed magnetic fields is uncertain.

Weak uniform seed field

Weak localized seed field

Astrophysical?

Topic 1. Amplification of a uniform seed field in turbulence

Weak seed field (B_0)

Key Process = Stretching!

 \Rightarrow B(t) \propto length

*In this talk, I'll assume incompressibility

Stretching of field lines

Fluid elements and field lines move together *Back reactions are negligible if $E_{mag} < E_{kin}$

Expectations:

Stretching on the dissipation scale will occur first because eddy turnover time is shortest there

What will happen when $E_{turb} \sim E_{mag}$ on the dissipation scale?

- → Exponential growth stage will end!
- Stretching scale gradually moves to larger scales. (see, for example, Cho & Vishniac 2000)

Results of simulations

Ryu+2008; Cho+ (2009); See also Schlueter & Bierman (1950)

Results of simulations

Cho et al. (2009)

* See also Cho & Vishniac (2000); Schekochihin et al (2006)

Conclusions for Topic 1

-Turbulence can amplify uniform weak seed B fields -Two stages of amplification: exp. and linear -Saturation time-scale ~15 (L/v)

Example) Cluster with a driving scale (L) of 300kpc & v~300km/s

 \rightarrow (L/v) ~ 1 billion years!

Growth of B takes ~ 15(L/v) ~ 15 billion years!

Present-day B ~ close to B_{sat} ~ a few μG (see Ryu et al (2008) for better estimates)

		C 1		C 11	
TABLE	1	Cluster	magnetic	fields	

Method	Strength μG	Model parameters
Synchrotron halos	0.4–1	Minimum energy, $k = \eta = 1$, $\nu_{\text{low}} = 10 \text{ MHz}$, $\nu_{\text{high}} = 10 \text{ GHz}$
Faraday rotation (embedded)	3-40	Cell size $= 10$ kpc
Faraday rotation (background)	1-10	Cell size $= 10$ kpc
Inverse Compton	0.2-1	$\begin{array}{l} \alpha = -1, \gamma_{\rm radio} \sim 18000, \\ \gamma_{\rm xray} \sim 5000 \end{array}$
Cold fronts	1-10	Amplification factor ~ 3
GZK	>0.3	AGN = site of origin for EeV CRs

Carilli & Taylor 2002

Topic 2: Growth of a localized seed field in turbulence

Weak localized seed field

Similar results for a localized seed & a uniform seed !

Cho & Yoo (2012)

Why are the results so similar?

→ Answer: fast magnetic diffusion or fast homogenization!

Fast homogenization followed by a usual turbulence dynamo is the key process!→What is the homogenization time in general?

The magnetized region expands \rightarrow What is the speed?

Homogenization time-scale?

V_{exp} ~ v → Homogenization time ~ L_{sys}/v = (L_{sys}/L)(L/v)
Example) Cluster of size (L_{sys}) 1Mpc and v~300 km/s
→ Homogenization time ~ 3 billion years
→ So, it is difficult to distinguish primordial and astrophysical origins

Cho (2013)

What if $v >> \eta$?

-The magnetic Prandtl number can be very large in the ICM (i.e. $v >> \eta$) -Homogenization and growth of a localized seed field in a high-Pr,m fluid is also fast!

Cho (2014)

Implications for observations

- Homogenization time-scale (L_{sys}/v) is important
 For a cluster of size 1Mpc:
 - If v > 75 km/s, $L_{sys}/v < age of the universe$

Regardless of the driving scale, the cluster is homogenized \rightarrow It is difficult to tell the origin.

- For a filament of size 4Mpc:
 - If v > 300 km/s, $L_{sys}/v < age of the universe$
 - So, if v<300 km/s, B field in the filament can be inhomogeneous
 - → RM measurements for filaments will be useful!

Conclusions

- Turbulence can efficiently amply seed fields
- If the seed field is localized:
 - Homogenization time-scale (L_{sys}/v) is important
 - After homogenization, the usual turbulence dynamo follows!
 - It is likely that clusters are already homogenized
 - Filaments may not be homogenized yet if v<300km/s