MHD Turbulence in Expanding and Contracting Media

Junseong Park¹, Dongsu Ryu¹, and Jungyeon Cho² ¹Dept. of Physics, Ulsan National Institute of Science and Technolog. Ulsan, Korea ²Dept. of Astronomy and Space Science, Chungnam National Univ. Daejeon, Korea

6th East-Asian Numerical Astrophysics Meeting

Purpose of Study

1. We investigated MHD turbulence by including the effects of expansion and contraction of background medium.

- 2. The main goal is to quantify the evolution and saturation of strength and characteristic lengths of magnetic fields in expanding and contracting media.
- 3. We examine the properties of turbulence in the regimes of $t_{eddy} < t_{exp-cntr}$ and $t_{eddy} > t_{exp-cntr}$. Based on it, we derive a scaling for the time evolution of rms peculiar velocity and magnetic field.

Contents

- Introduction
 - Fluid in expanding/contracting coordinate
- The MHD equations in expanding/contracting media
- Simulation –initial condition
- Simulation results
 - Test simulation
 - Decaying turbulence
 - Scaling of velocity and magnetic field in decaying turbulence.
- Conclusion and Further Work

Fluid in expanding/contracting coordinate

• When the matter expand, the magnetic field in the matter is expand with comoving coordinate system.

The MHD equation in expanding/contracting media

 $v' = \sqrt{\rho}v = v/(a\sqrt{a})$ is included density in peculiar velocity and **B** is magnetic field, *p*' is the pressure, $J = \bigtriangledown \times B$ is the current, *v* is the viscosity, η is the magnetic diffusion. Where f is a random driving force.

$$\frac{\partial \mathbf{v}'}{\partial t} = \sqrt{a}\mathbf{v}' \times (\nabla \times \mathbf{v}') - \frac{5}{2}\frac{\dot{a}}{a}\mathbf{v}' + \sqrt{a}\mathbf{J} \times \mathbf{B} + \frac{1}{a^2}v\nabla^2\mathbf{v}' + \nabla p' + f$$
$$\frac{\partial \mathbf{B}}{\partial t} = \sqrt{a}\nabla \times (\mathbf{v}' \times \mathbf{B}) - 2\frac{\dot{a}}{a}\mathbf{B} + \frac{1}{a^2}\eta\nabla^2\mathbf{B}$$

Where $\rho \propto 1/a^3$

$$\mathcal{A}(t) = \left(\frac{t}{t_{\text{exp-cntr}}} + 1\right)^{\mathcal{A}_{p}} \quad \begin{array}{l} \text{Scale factor with } a_{p} = 1 \text{ for expand, } a_{p} = -1 \text{ for contract} \\ \left(\begin{array}{c} a_{p} = 1 & \Rightarrow & \dot{a} = 1/t_{exp} \\ a_{p} = -1 & \Rightarrow & \dot{a} = -t_{cntr}/(t + t_{cntr})^{2} \end{array}\right)$$

t_{exp-cntr} is smaller, the expanding and contracting rate increase.

Simulation –initial condition

- □ Resolution : 256^3 grid (periodic box size = 2π)
- □ Incompressibility is assumed.
- Have considered only case of $\nu = \mu$
- Have considered hyperviscosity, hyperdiffusion
- □ At t=0, Mean magnetic field strength is $B_0 = 0.0001$
- □ Have simulated using $t_{exp}=10$, $t_{cntr}=1$

Resolution	Condition	$t_{\rm exp-cntr}$	Strength of mean B_0 field
	contracting	1	0.0001
256^{3}	expanding	10	0.0001
	Not contracting/expanding	0	0.0001

Table 1: Simulation conditions in the case of decaying turbulence

The incompressible MHD turbulence without expanding/contracting effect

- ➤ The kinetic energy peak occurs at the energy injection scale. And magnetic energy spectrum peak occurs at larger wave number than the energy injection scale.
- ▶ Runs 128³ and 256³ resolution show similar growth rates and final saturation level.

The incompressible MHD turbulence without expanding/contracting effect

After that the turbulence has reached a stationary state, we turn off the random driving forces.

From this time (t=40), we let the turbulence decay and inject the effect of the expansion/contraction.

The incompressible MHD turbulence without expanding/contracting effect

After that the turbulence has reached a stationary state, we turn off the random driving forces.

From this time (t=40), we let the turbulence decay and inject the effect of the expansion/contraction.

Energy density and Eddy turn over time Contracting media

•
$$t_{eddy} > t_{cntr}$$
 change to
 $t_{eddy} < t_{cntr} \ a \approx -0.2$

The contracting effect is initially dominant and then at this point it's changed to the evolution of turbulence is dominant.

- $t_{eddy} < t_{exp}$ change to $t_{eddy} > t_{exp}$ at $a \approx 0.2$
- The evolution of turbulence is initially dominant and then at this point it's changed to the expanding effect is dominant

Scaling of velocity and magnetic field (t_{eddy}, t_{exp}, t_{cntr})

Effect of the expansion and contraction dominated

(Robertson & Goldriech 2012)

Scaling of velocity and magnetic field (t_{eddv}, t_{exp}, t_{cntr})

Turbulence dominated

(Left) v, $b \sim t^{-0.5}$ in decaying MHD turbulence regime (Biskamp & Müller 1999) (Middle, Right) $\sqrt{\rho}v$, b~ t^{-1} for expanding media, $\sqrt{\rho}v$, b~ t^1 for contracting media $\frac{d\log(\omega/H)}{d\log(1/a)} = \left(2 + \eta \frac{\omega}{H}\right) - \frac{d\log H}{d\log(1/a)}$ (Robertson & Goldriech 2012) $\omega \sim 1/t_{\rm eddv}$, $\eta = 1.2$

 $H = \dot{a} / a$

Energy decay rate for Turbulence dominant case

Energy decay rate: $\epsilon = -\frac{dE}{dt}$, $E = E^K + E^M$

 $(dE/dt)E^{-2} = \text{CONST} \implies E \sim t^{-1}$

in decaying MHD turbulence regime (Biskamp & Müller 2000)

Energy spectrum

- The dissipation range moves toward (larger wave number in contracting media smaller wave number in expanding media
- Regardless of the expansion and contraction effects, the total energy and residual spectrum follows the $E_k^T \sim k^{-5/3}$ and $E_k^R \sim k^{-7/3}$ (Müller 2005) in the inertial range.

Conclusion

- We performed a preliminary study of incompressible MHD decaying turbulence by including the effect of expansion and contraction.
- Scaling for velocity and magnetic field in expanding/contracting media $t_{eddy} > t_{exp-cntr}$ $v \sim a^{-1}$, $b \sim a^{-2}$
 - $t_{eddy} < t_{exp-cntr}$ \longrightarrow $\left\{ \begin{array}{c} \sqrt{\rho}v, b \sim t^{-1} \text{ in expanding media} \\ \sqrt{\rho}v, b \sim t^{1} \end{array} \right.$ in contracting media
- The total energy and residual spectrum follows the $E_k^T \sim k^{-5/3}$ and $E_k^R \sim k^{-7/3}$ (Müller 2005) in the inertial range.
- The specific results would depend on t_{eddy} and $t_{exp-cntr}$. We will explore those in future.