#### Hunting

#### a Wandering Supermassive Black Hole in M31 Halo Hermitage using GPU Cluster (YM, Mori, Kawaguchi, Saito, 2014, ApJ, 783, 87)

#### Yohei Miki

(University of Tsukuba/CREST, JST) Masao Mori (University of Tsukuba) Toshihiro Kawaguchi (NAOJ) Yuriko Saito (SOKENDAI / NAOJ) Contents

- Introduction
- Aim
- Method
- Results
- Summary

#### Introduction: Magorrian relation



- Galaxies host massive black holes (MBHs;  $10^{6}$   $10^{9} M_{\odot}$ ) in their central region.
- $M_{\rm BH} \sim 0.002 M_{\rm bulge}$
- The formation and evolution process of the MBHs has not yet well understood.
  - Gas accretion
  - Merger of MBHs

#### Hierarchical structure formation



- In a cold dark matter universe, large galaxies have enlarged through multiple mergers with smaller galaxies.
- MBHs finally sink toward the central region of the host galaxy under dynamical friction.
- If MBHs in the galactic center also merge, the relation  $M_{\rm BH} \propto M_{\rm bulge}$  is held.

# MBHs in galactic halo

- MW like galaxies would host 5—15 MBHs within their halos.
  - However, such MBHs have not yet been confirmed by observations.
- Prediction of the MBH position helps future observational detection of the wandering MBHs in galactic halos.
  - We simultaneously track the orbit of the MBH and reproduce observed merger remnants using *N*-body simulation.
  - We can predict the current location of wandering MBHs.
  - Giant stellar stream in M31 is a suitable object.



## Merger remnants in the M31 halo

- Observed structures (stream, shells: Ibata et al. 2001; McConnachie et al. 2009) are the merger remnant of a tidally-disrupted dwarf galaxy about 1 Gyr ago (Fardal et al. 2007; Mori & Rich 2008).
- The dynamical mass or the infalling satellite is  $\sim 10^9 M_{\odot}$ .
  - The progenitor likely has an MBH whose mass is 10<sup>5</sup> -10<sup>6</sup> M<sub>☉</sub> (Magorrian relation).
  - The most uncertainty of the MBH position is caused by uncertainty about the infalling orbit of the satellite.

McConnachie et al. (2009) East Shell



**Giant Stellar Stream** 



## Parameter study for infalling orbit

- To determine the observational field for the future observational detection of the MBH, we must evaluate the uncertainty about the orbit.
- The number of dimension is four (= 6 2).
  - Fix the initial distance from the M31 center.
  - M31 is modeled as an axisymmetric system.
- We have utilized HA-PACS, a GPU cluster.
  - A fast N-body code based on CUDA (YM+12, 13).
  - ~1,000 runs/day @ N = 65,536 using 128GPUs.





#### Criterion for on-the-fly analysis

- Is the stream reproduced?
  - Position of the stream.
- Are the shells reproduced?
  - Shapes and positions of the shells.
- Is the contrast among the stream and two shells reproduced?



Made from Irwin et al. (2005)



## Results of the parameter study (1/2)

- 5,700,000 orbit models (~45,000 N-body runs)
  - 138 models reproduce the observed structures.



## Results of the parameter study (2/2)

- Periapsis distance is about 1 kpc.
  - Tidal forces exerted by the bulge of M31 stretch and disrupt the infalling satellite.
  - It is the first collision between M31 and the satellite.
- $t_{\rm cross} \sim t_{\rm ff}$  = 15 Myr
- The infall velocity is slower than  $v_{\rm esc} \sim 550$  km/s.
  - The satellite was bound by M31.
- A new mystery: the collision that occurred several hundred megayears ago should have been the first collision of the infalling satellite.

#### MBH hosted by the satellite

- The dynamical mass of the satellite is  $\sim 10^9 M_{\odot}$ .
  - The Magorrian relation suggests the presence of an MBH whose mass is  $10^{5-6} M_{\odot}$ .
- We can predict the current position of the MBH by calculating the orbital evolution of an MBH particle.
- Re-simulation of time evolution of the satellite  $(M=3 \times 10^9 M_{\odot}, r_t = 4.5 \text{ kpc}, c = 0.7)$  and an additional MBH particle  $(M_{BH}=3 \times 10^6 M_{\odot})$ .
  - *N* = 524,288 + 1
  - *M*<sub>BH</sub>:*M*<sub>fs</sub> ~ 500:1

## Current position of the MBH

- Five orbit models reproduce the observed structures.
- The predicted positions of the MBH are confined to a small region.
  - An observational field of 0.6° × 0.7° sufficiently covers the predicted area.
- The distance from the M31 center is 20-40 kpc.
  - The MBH locates in the M31 halo, not in the M31 center.



## Pan-Andromeda Archaeological Survey

- Photometric survey around M31.
- A few tens of satellites.
  - The distance, radial velocity, and velocity dispersion have been already measured.
  - Conn+12, Collins+13
- Discovery of a disk-like structure of satellite galaxies. (Ibata+13, Conn+13)

#### Martin et al. (2013)



Sky map from M31



Discussion: expected spectrum from the wandering MBH in the M31 halo

• The MBH is detectable in the radio band. (Kawaguchi, Saito, YM, Mori, 2014, ApJL, 789, L13)



# Have we already observed the wandering MBH ?

 Comparison between the predicted locations of the MBH and distribution of observed polarized radio sources. (Han+98, Giessuebel +13)

(Han+98, Giessuebel +13)

- Some radio sources locate <sup>o</sup>⊂ near the predicted area.
  - A new possibility: we have already observed the wandering MBHs; however, we does not notice the fact.



#### Summary

- We have investigated the current likely positions of the wandering MBH in the M31 halo.
  - We performed a numerous parameter survey using GPUs to constrain the infalling orbit of the satellite.
  - About 5,700,000 orbit models were examined.
- The results show:
  - The MBH lies within the M31 halo, closer to the Milky Way than the M31 disk.
  - An observational field of 0.6° × 0.7° sufficiently covers the predicted current positions of the MBH.
  - Current operating facilities such as EVLA and ALMA have enough sensitivities to detect the signal from the MBH.