Star Formation in Nuclear Rings of Barred-Spiral Galaxies

Woo-Young Seo, Woong-Tae Kim Seoul National University

- Nuclear rings in barredspiral galaxies are sites of intense star formation.
- Observations indicate that the star formation rate in nuclear rings differs from galaxy to galaxy and is widely distributed in the range of 0.1-10 M_☉ yr⁻¹.

NGC 1097

Observational studies

- Continuous SF
 - van der Laan et al. (2013) find that the circumnuclear ring in NGC 6951 has been forming stars for ~1Gyr.
- Multiple-burst SF
 - Using stellar population synthesis models Allard et al. (2006) estimate that M100(NGC 4321) shows multiple-burst type SF.
 - Sarzi et al. (2007) show two more galaxies (NGC4314 and NGC 7217) also have multiple-burst SF using same method.

Observational studies

- Age gradient of young star clusters in nuclear rings
 - Some galaxies show an age gradient along the azimuthal direction.
 - Some galaxies do not show a gradient. (Mazzuca et al. 2008, Ryder et al. 2010, Brandel et al. 2012)

Galaxy Model and Methods

- Consider a 2D gaseous disk that is isothermal (c_s=10 km/s) and selfgravitating (CMHOG code).
- Use an exponential gaseous density profile (Bigiel & Blitz, 2012).
- Bar potential is modeled by Ferrers prolate. (Athanassoula, 1992)
 - Bar fraction f = 30%, Major axis = 5kpc, Axis ratio a/b = 2.5
 - Pattern speed of a bar = 33 km/s/kpc
- Take models both with and without spirals.

Galaxy Model and Methods

- Star formation
 - SF critical density comes from Jeans criterion : $\Sigma_{th} \simeq 1160 M_{\odot} pc^{-2}$
 - SF efficiency ~ 1% (Krumhlz & Tan, 2007)
 - SF probability in a time interval Δt is given by $p\approx \epsilon_{\rm ff}\Delta t/t_{\rm ff}\sim 10^{-6}-10^{-5}$
 - 90% of gas turns into a particle that represents a star cluster (Typical Mass ~ $10^5 M_{\odot}$)
- Momentum Feedback
 - Consider only Type II SN events
 - Each SN drives total momentum to the surrounding medium amounting to $P_{SN} = 3x10^5 M_{\odot} \text{ km/s}$ (Kim et al. 2013)
 - Delayed explosion : delay time ~ 10Myr

Overall evolution of bar-only model

- Non-axisymmetric bar potential perturbs gas orbits to create overdense ridges at the downstream side from the major axis.
- The overdense ridges develop into dust-lane shocks and the gas moves radially inward along dust lanes.
- Only the gas inside bar region responds strongly to the bar potential, while the outer region is not much affected.

 \rightarrow Gas outside the bar region do not move inward by the bar potential.

Age Gradient

- When the SFR is larger than $1 M_{\odot} \text{ yr}^{-1}$:
 - Star formation events are widely distributed throughout the whole length of the ring.
- When the SFR is smaller than $1 M_{\odot} \text{ yr}^{-1}$:
 - Ages of young star clusters exhibit an azimuthal gradient along the ring, since star formation events take place mostly near the contact points.
- Two models of star formation (Böker et al. 2008)
 - Popcorn & Pearls-on-a-string model

Age Gradient

- Inflowing gas moves into the ring through dust lanes.
- Maximum SFR at contact points is (Seo&Kim 2013)

$$\dot{M}_{*,\mathrm{CP}} = \frac{2\epsilon_{\mathrm{ff}} \Sigma_{\mathrm{CP}} r_{\mathrm{NR}} \Delta r \Delta \phi}{t_{\mathrm{ff}}} \sim 1 \ M_{\odot} / \mathrm{yr}$$
$$\begin{pmatrix} \epsilon_{\mathrm{ff}} = 0.01 \\ \Sigma_{\mathrm{CP}} = 4000 \ M_{\odot} \ \mathrm{pc}^{-2} \\ r_{\mathrm{NR}} = 1 \ \mathrm{kpc} \end{pmatrix} \dot{M}_{*,\mathrm{CP}} \propto c_s^3 r_{\mathrm{NR}}^2$$

- If mass inflow rate to the ring is small, most of the inflowing gas can be converted to stars at contact points.
- If mass inflow rate is large, all inflowing gas cannot be transformed at contact points.

Temporal variations of SFR

- At early time, the SFR displays a strong primary burst which is caused by the rapid gas infall to the ring.
- At late time, gas in the bar region is almost emptied, making mass inflow rate to the ring and ring SFR fairly small.

Bar-only model cannot explain multiple bursts of star formation.
→ Additional mass inflows are required

Necessity of Gas Feeding to the Bar Region

- Candidate mechanisms for gas feeding :
 - Angular momentum dissipation by spiral arms (Roberts & Shu 1972; Lubow et al. 1986; Hopkins & Quataert 2011; Kim&Kim 2014)
 - Galactic fountains (Fraternali & Binney 2006, 2008).
 - Cosmic accretion of primordial gas (e.g., Dekel et al. 2009)
- Mass inflow by spiral arms (Kim&Kim 2014)
 - Inside the Co-rotation radius(CR) of arms, gas can lose angular momentum by passing through spiral arms, while the gas outside the CR of arms move radially outward.
 - Spiral shocks are strong when the arm strength F is large and/or pattern speed Ω_{arm} is small.
 - Spiral arms can transport the gas inward at a rate of ~ $0.05-3.0 M_{\odot} \text{ yr}^{-1}$.
- Spiral arm potential
 - m = 2, pitch angle = 20°
 - F = 5~20%, Pattern speed of arms = 10, 20, 33km/s/kpc (Co-rotation Radius : 20, 10, 6kpc)

Effects of spiral arms

- If the CR is located to far from the bar region, spiral arms can drive gas toward the bar region.
- This inflowing gas moves on along x1 orbits after entering the bar region and piles up at the bar ends where x1 orbits crowd.
- Mutual collisions of gas orbits and interaction between the bar and spirals take away angular momentum from the gas
 - \rightarrow Gas blobs move along the dust lanes to the nuclear ring, intermittently.

Enhanced SF by Arms

- The presence of spiral arms can make the SFR rejuvenated at t > 0.4 Gyr.
- Episodic star formation bursts occur at late time, since the mass infalls from the bar ends to the ring occur intermittently.

- Total converted mass is larger for models with larger F and smaller Ω_{arm} .
- Enhanced mass in models with $\Omega_{sp} = 33$ km/s/kpc is not much, since the co-rotation radius is 6kpc.

Summary

• Our results show that an azimuthal age gradient of young star clusters is expected when the SFR is low (less than $1 M_{\odot} yr^{-1}$ in our models).

• We find that spiral arms can supply gas to nuclear rings of barred-spiral galaxies, giving rise to multiple bursts of star formation at late time.