Metallicity Evolution in the Milky Way through the Collision with the High Velocity Clouds

Kyujin Kwak

Ulsan National Institute of Science and Technology (UNIST)

Outlines

- Introduction to High Velocity Clouds
 - Observational Features
 - Theory: Origin, Current Status, and Future
- HVCs Colliding with the Galactic Disk
 - Observational Evidence: Smith Cloud, Complex C
 - Implications
- Trace Mixing of Metallicities
 - Numerical Techniques
 - Example (Halo)

High, Intermediate, and Low Velocity Clouds (HVCs, IVCs, and LVCs)

• Discovered first in 21 cm radio emission by Muller et al. (1963)

• |HVCs| > 90 km/s, |IVCs| < 90 km/s (in LSR)

High Velocity Clouds

Wakker & van Woerden 1997

Three Possible Origins of HVCs

- Galactic fountain
- Accretion of primordial gas left over from galaxy formation
- Gas stripped off of the nearby dwarf galaxies

The Milky Way

Questions on HVCs

- Where are they from?
 - Distances
 - Metallicities
- How are they interacting with environments?
 - Neutral vs. Ionized (H α , low ions)
 - High ions (C IV, N V, O VI, and Si IV) in UV
 - X-rays
- What is their ultimate fate?
 - Fuel for the star formation in the Galactic disk

Distances and Metallicities

Continues colors: velocities of H I 21 cm emission (|v_{LSR}|>100 km s⁻¹) Circles: velocities of OVI absorption

Sembach et al. 2003

Simulations of HVCs in the Halo

Infalling Clouds Light Up and Reveal Hot Galactic Corona

This illustration shows clouds falling onto our galaxy, the Milky Way. These clouds "light up" in ionized oxygen when they encounter the hot, extended corona of gas that surrounds the Milky Way.

Simulations of HVCs

Simulational Study of HVCs

 \log_{10} [O VI ion fraction]

Compare with Observations

Smith Cloud: an HVC Colliding with the Disk

 $|V_{LSR}| > 90 \text{ km/s}$

Wakker & van Woerden 1997

Collision with the Disk: Smith Cloud

$$V_{
m LSR}=100~$$
 Km/s

Lockman et al. 2008

Collision with the Disk: Smith Cloud

Nichols & Bland-Hawthorn 2009

Complex C

Fate of HVC: Complex C

 $M_{HI} = 5 \times 10^{6} M_{sun}$

Accretion Rate $\sim 0.1 M_{sun}$ / year

Metallicity $\sim 0.1 - 0.5$ solar across the cloud

Thom et al. 2008

Questions on Collision Scenario

- Can the cloud survive the collision?
- Can it maintain its cloud shape after the collision?
- (What if the cloud is embedded within the dark matter potential?)

Previous (Simulation) Works

• Tenorio-Tagle et al. 1986

• h_{disk} = 100 pc (total width = 200 pc)

Case	$\binom{n_g}{(\mathrm{cm}^{-3})}$	$\binom{n_c}{(\mathrm{cm}^{-3})}$	R _c (pc)	V_r (km s ⁻¹)	Mode	E _K (erg)
1	1	1	10	100	Radiative	9.44 10 ⁴⁸
2	1	1	10	100	Adiabatic	9.44 10 ⁴⁸
3	1	1	10	300	Adiabatic	8.49 10 ⁴⁹
4	1	0.1	10	300	Radiative	8.49 1048
5	1	100	10	300	Radiative	8.49 10 ⁵¹
6	1	10	10	300	Radiative	8.49 10 ⁵⁰
7	1	1	10	300	Radiative	8.49 10 ⁴⁹
8	1	1	20	300	Radiative	6.8 10 ⁵⁰

Table 1. Cloud-galaxy interactions

Previous Works (Cont'd)

• Tenorio-Tagle et al. 1987

• Include Galactic gravity

Region	$\rho_{\rm g}(0)$ (10 ⁻²⁴ g cm ⁻³)	h (pc)
GI	15ª	70ª
GII	5 ^ь	100 ^b
GIII	0.5 ^b	500°

^b See text.

° Kulkarni et al., 1982

Table 1. Parameters for the disk

Table 2. Models with spherical clouds

Model	Region	n_{c} (cm ⁻³)	R _c (pc)	$\frac{V_{\rm c}}{(\rm kms^{-1})}$	E _K (erg)	Z_{i} (pc)
1	GII	1	30	100	2.5 10 ⁵⁰	400
2	GI	1	100	100	9.5 10 ⁵¹	650
3	GII	1	100	100	9.5 10 ⁵¹	650
4	GIII	1	100	100	9.5 10 ⁵¹	650
5	GII	0.3	100	50	7.0 1050	650
6	GII	0.3	100	100	2.810^{51}	650
7	GII	0.3	100	300	2.510^{52}	650
8	GIII	0.3	100	50	2.410^{51}	650
9	GIII	1	100	50	7.0 10 ⁵⁰	650
10	GIII	1	30	50	6.4 10 ⁴⁹	720

Use the Properties of Dark Matter Halo from Sternberg, McKee, & Wolfire, 2002

• Hot ISM gas

-
$$n_{H,ism} = 10^{-3} \text{ cm}^{-3}$$

- $T_{ism} = 10^{6} \text{ K}$

- T_{cloud} = 5000 K
- n_{H,center} = 100 cm⁻³
- $X_0 \sim 0.04$ (<< 1) i.e., $r_{cloud} \sim 110$ pc
- : being consistent with $f_{gas} = \exp\left[-(3/2)\left(\frac{v_s^2}{c_g^2}x\right)\right]$
- $M_{cloud} \simeq 6.5 \times 10^5 M_{sun}$

FLASH

- Developed as open source at Univ. of Chicago (Fryxell et al. 2000, ApJS)
- Modular Package written in Fortran 90
 - Multi-dimension Hydrodynamics including MHD and RHD
 - Parallel Adaptive Mesh Refinement by using PARAMESH
 - Various physical processes: radiative cooling due to line
 emission, thermal diffusion, gravity, particle tracking, ionization
 of atoms, nuclear burning with selected chain reactions, etc.

Ionization Module in FLASH

$$\begin{aligned} \frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \mathbf{v}) &= 0 \\ \frac{\partial \rho \mathbf{v}}{\partial t} + \nabla \cdot (\rho \mathbf{v} \mathbf{v}) + \nabla P &= \rho \mathbf{g} \\ \frac{\partial \rho E}{\partial t} + \nabla \cdot [(\rho E + P) \mathbf{v}] &= \rho \mathbf{v} \cdot \mathbf{g} \ [+S] \\ \frac{\partial n_i^Z}{\partial t} + \nabla \cdot n_i^Z \mathbf{v} &= R_i^Z \ (i = 1, \dots, N_{spec}) \ , \end{aligned}$$

$$R_i^Z = N_e [n_{i+1}^Z \alpha_{i+1}^Z + n_{i-1}^Z S_{i-1}^Z - n_i^Z (\alpha_i^Z + S_i^Z)] ,$$

$$\frac{\partial n_i^Z}{\partial t} = R_i^Z \ (i = 1, \dots, N_{spec})$$

Non-Equilibrium Cooling in FLASH

$$\begin{aligned} \frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \mathbf{v}) &= 0 \\ \frac{\partial \rho \mathbf{v}}{\partial t} + \nabla \cdot (\rho \mathbf{v} \mathbf{v}) + \nabla P &= \rho \mathbf{g} \\ \frac{\partial \rho E}{\partial t} + \nabla \cdot [(\rho E + P) \mathbf{v}] &= \rho \mathbf{v} \cdot \mathbf{g} \underbrace{[+S]} \\ \frac{\partial n_i^Z}{\partial t} + \nabla \cdot n_i^Z \mathbf{v} &= R_i^Z \quad (i = 1, \dots, N_{spec}) , \end{aligned}$$
$$R_i^Z = N_e [n_{i+1}^Z \alpha_{i+1}^Z + n_{i-1}^Z S_{i-1}^Z - n_i^Z (\alpha_i^Z + S_i^Z)] ,$$

$$\frac{\partial n_i^Z}{\partial t} = R_i^Z \ (i = 1, \dots, N_{spec})$$

Tracing ionization states of abundant elements H, He, C, N, O, Ne, Mg, Si, S, Ar, Ca, Fe, and Ni (~200 ionization states)

Metallicity Mixing in the Halo

Gritton, Shelton, and Kwak (2014)

Mixing Efficiency with Velocities

Summary

 Metallicity evolution history in the Galactic disk could be affected by the collision of metal-poor HVCs and this process could be traced by numerical simulations that should be capable of tracing the abundance mixing.

Acknowledgements

- Kwang Hyun Sung
- Hyun Taek Lee
- Seungwon Yang
- Jongsoo Kim
- Robin L. Shelton
- David B. Henley
- Jeffrey A. Gritton