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1. Motivations

Motivations

Many physical problems show great disparities in the spatial and temporal

scales (multiscale problems), which a static grid approach cannot treat

e�ciently.

Turbulence

Magnetic instabilities

Magnetic reconnection

Binary mergers

Circumbinary discs

Relativistic jets

...

Adaptive Mesh Re�nement (AMR) , name-
ly the possibility to change the computatio-
nal grid dynamically in space and in time,
becomes necessary.
High Order Methods can also help substan-
tially when very small details need to be
solved.
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1. Motivations

Taken separately, AMR and High Order methods have long been used in RHD

AMR+High Order Methods (relativistic case)
- FLASH code by Fryxell et al. (2000), ApJ Suppl., 131, 273
- Zhang & MacFadyen (2006), ApJ Suppl., 164, 255
- RENZO code by Wang et al. (2008), ApJ, 176, 467
- PLUTO code by Mignone et al. (2012), ApJ Suppl., 198, 7

A particularly appealing implementation of High order methods is represented by
ADER schemes, which are one-step time-update schemes.
- Original version: use the Lax-Wendro� procedure [Toro et al. (2001); Titarev
and Toro (2002) ...]
- Modern version: use a weak integral formulation of the governing PDE [Dumbser
et al. (2008) JCP, 227, 3971; Balsara et al (2009) JCP, 228, 2480]

AMR+ADER schemes.... presented very recently for the non-relativistic Euler
equations by
- Dumbser, Zanotti, Hidalgo, Balsara (2013), JCP, 248, 257-286
- and extended to the relativistic regime at this conference for the �rst time

Olindo Zanotti ADER-WENO Schemes with AMR 2 / 20



1. Motivations

Taken separately, AMR and High Order methods have long been used in RHD

AMR+High Order Methods (relativistic case)
- FLASH code by Fryxell et al. (2000), ApJ Suppl., 131, 273
- Zhang & MacFadyen (2006), ApJ Suppl., 164, 255
- RENZO code by Wang et al. (2008), ApJ, 176, 467
- PLUTO code by Mignone et al. (2012), ApJ Suppl., 198, 7

A particularly appealing implementation of High order methods is represented by
ADER schemes, which are one-step time-update schemes.
- Original version: use the Lax-Wendro� procedure [Toro et al. (2001); Titarev
and Toro (2002) ...]
- Modern version: use a weak integral formulation of the governing PDE [Dumbser
et al. (2008) JCP, 227, 3971; Balsara et al (2009) JCP, 228, 2480]

AMR+ADER schemes.... presented very recently for the non-relativistic Euler
equations by
- Dumbser, Zanotti, Hidalgo, Balsara (2013), JCP, 248, 257-286
- and extended to the relativistic regime at this conference for the �rst time

Olindo Zanotti ADER-WENO Schemes with AMR 2 / 20



1. Motivations

Taken separately, AMR and High Order methods have long been used in RHD

AMR+High Order Methods (relativistic case)
- FLASH code by Fryxell et al. (2000), ApJ Suppl., 131, 273
- Zhang & MacFadyen (2006), ApJ Suppl., 164, 255
- RENZO code by Wang et al. (2008), ApJ, 176, 467
- PLUTO code by Mignone et al. (2012), ApJ Suppl., 198, 7

A particularly appealing implementation of High order methods is represented by
ADER schemes, which are one-step time-update schemes.
- Original version: use the Lax-Wendro� procedure [Toro et al. (2001); Titarev
and Toro (2002) ...]
- Modern version: use a weak integral formulation of the governing PDE [Dumbser
et al. (2008) JCP, 227, 3971; Balsara et al (2009) JCP, 228, 2480]

AMR+ADER schemes.... presented very recently for the non-relativistic Euler
equations by
- Dumbser, Zanotti, Hidalgo, Balsara (2013), JCP, 248, 257-286
- and extended to the relativistic regime at this conference for the �rst time

Olindo Zanotti ADER-WENO Schemes with AMR 2 / 20



1. Motivations

Taken separately, AMR and High Order methods have long been used in RHD

AMR+High Order Methods (relativistic case)
- FLASH code by Fryxell et al. (2000), ApJ Suppl., 131, 273
- Zhang & MacFadyen (2006), ApJ Suppl., 164, 255
- RENZO code by Wang et al. (2008), ApJ, 176, 467
- PLUTO code by Mignone et al. (2012), ApJ Suppl., 198, 7

A particularly appealing implementation of High order methods is represented by
ADER schemes, which are one-step time-update schemes.
- Original version: use the Lax-Wendro� procedure [Toro et al. (2001); Titarev
and Toro (2002) ...]
- Modern version: use a weak integral formulation of the governing PDE [Dumbser
et al. (2008) JCP, 227, 3971; Balsara et al (2009) JCP, 228, 2480]

AMR+ADER schemes.... presented very recently for the non-relativistic Euler
equations by
- Dumbser, Zanotti, Hidalgo, Balsara (2013), JCP, 248, 257-286
- and extended to the relativistic regime at this conference for the �rst time

Olindo Zanotti ADER-WENO Schemes with AMR 2 / 20



2. The numerical method (ADER approach) Finite volume scheme
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2. The numerical method (ADER approach) Finite volume scheme

Finite volume scheme

We consider hyperbolic systems of balance laws in Cartesian coordinates

∂u

∂t
+
∂f

∂x
+
∂g

∂y
+
∂h

∂z
= 0

We use a Standard Finite Volume discretization

un+1

ijk = un
ijk −

∆t

∆xi

(
fi+ 1

2
,jk − fi− 1

2
,jk

)
− ∆t

∆yj

(
gi,j+ 1

2
,k − gi,j− 1

2
,k

)
− ∆t

∆zk

(
hij,k+ 1

2

− hij,k− 1

2

)
+ ∆tSijk ,

over the control volumes Iijk = [xi− 1

2

; xi+ 1

2

]× [yj− 1

2

; yj+ 1

2

]× [zk− 1

2

; zk+ 1

2

], with

u
n
ijk =

1

∆xi

1

∆yj

1

∆zk

x
i+ 1

2∫
x
i− 1

2

y
j+ 1

2∫
y
j− 1

2

z
k+ 1

2∫
z
k− 1

2

u(x , y , z , tn)dz dy dx

fi+ 1

2
,jk =

1

∆t

1

∆yj

1

∆zk

tn+1∫
tn

y
j+ 1

2∫
y
j− 1

2

z
k+ 1

2∫
z
k− 1

2

~f
(
q
−
h (xi+ 1

2

, y , z , t), q+h (xi+ 1

2

, y , z , t)
)
dz dy dt, .
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2. The numerical method (ADER approach) Finite volume scheme

- Reconstruction: introduce a nodal basis of polynomials ψl (ξ) of order M de�ned with
respect to a set of Gauss-Legendre nodal points λk , such that ψl (λk) = δlk
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2. The numerical method (ADER approach) Finite volume scheme

- Build one�dimensional reconstruction stencils along each direction

Ss,xijk =
i+R⋃

e=i−L

Iejk , Ss,yijk =

j+R⋃
e=j−L

Iiek , Ss,zijk =
k+R⋃

e=k−L

Iije ,

three stencils for even M

four stencils for odd M

M + 1 cells in each stencil
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2. The numerical method (ADER approach) Finite volume scheme

1 Perform an entire polynomial WENO reconstuction along x− direction:

w
s,x
h (x , tn) =

M∑
p=0

ψp(ξ)ŵn,s
ijk,p := ψp(ξ)ŵn,s

ijk,p ∀ Ss,xijk

Impose integral conservation on all elements of the stencil:

1

∆xe

∫ x
e+ 1

2

x
e− 1

2

ψp(ξ(x))ŵn,s
ijk,p dx = u

n
ejk , ∀Iejk ∈ Ss,xijk

Perform a data-dependent nonlinear combination:

w
x
h(x , tn) = ψp(ξ)ŵn

ijk,p, with ŵ
n
ijk,p =

Ns∑
s=1

ωsŵ
n,s
ijk,p

ωs =
ω̃s∑
k ω̃k

, ω̃s =
λs

(σs + ε)r

σs = Σpmŵ
n,s
ijk,pŵ

n,s
ijk,m Σpm =

M∑
α=1

1∫
0

∂αψp(ξ)

∂ξα
· ∂

αψm(ξ)

∂ξα
dξ .

[see Dumbser & Käser, (2007), JCP, 221, 693]
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2. The numerical method (ADER approach) Finite volume scheme

2 Perform a second polynomial WENO reconstuction along y− direction using as
input the M + 1 degrees of freedom ŵn

ijk,p:

w
s,y
h (x , y , tn) = ψp(ξ)ψq(η)ŵn,s

ijk,pq .

Apply integral conservation is now in the y direction:

1

∆ye

∫ y
e+ 1

2

y
e− 1

2

ψq(η(y))ŵn,s
ijk,pq dy = ŵ

n
iek,p, ∀Iiek ∈ Ss,yijk .

=⇒

w
y

h(x , y , tn) = ψp(ξ)ψq(η)ŵn
ijk,pq, with ŵ

n
ijk,pq =

Ns∑
s=1

ωsŵ
n,s
ijk,pq,
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2. The numerical method (ADER approach) Finite volume scheme

3 Perform the last polynomialWENO reconstuction along z− direction using as input
the (M + 1)2 degrees of freedom ŵn

ijk,pq: We therefore have

w
s,z
h (x , y , z , tn) = ψp(ξ)ψq(η)ψr (ζ)ŵn,s

ijk,pqr .

with the integral conservation written as above,

1

∆ze

∫ z
e+ 1

2

z
e− 1

2

ψr (ζ(z))ŵn,s
ijk,pqr dz = ŵ

n
iek,pq, ∀Iije ∈ Ss,zijk .

=⇒ The �nal three-dimensional WENO polynomial

wh(x, tn) = ψp(ξ)ψq(η)ψr (ζ)ŵn
ijk,pqr , ŵ

n
ijk,pqr =

Ns∑
s=1

ωsŵ
n,s
ijk,pqr .
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2. The numerical method (ADER approach) Local space-time Discontinuous Galerkin predictor
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2. The numerical method (ADER approach) Local space-time Discontinuous Galerkin predictor

Local space-time DG predictor [see Dumbser et al. (2008), JCP, 227, 3971]

An alternative to the Cauchy-Kovalewski procedure to obtain the time evolution of the
reconstructed polynomials and build one-step time-update numerical schemes.
In practice we need

qh =⇒ fi+ 1

2
,jk =

1

∆t

1

∆yj

1

∆zk

tn+1∫
tn

y
j+ 1

2∫
y
j− 1

2

z
k+ 1

2∫
z
k− 1

2

~f
(
q
−
h (xi+ 1

2

, y , z , t), q+h (xi+ 1

2

, y , z , t)
)
dz dy , dt,

∂u

∂τ
+
∂f∗

∂ξ
+
∂g∗

∂η
+
∂h∗

∂ζ
= S

∗

with

f
∗ =

∆t

∆xi
f, g

∗ =
∆t

∆yj
g, h

∗ =
∆t

∆zk
h, S

∗ = ∆tS.

We then multiply by the test function θp(ξ, τ) and integrate in space-time

1∫
0

1∫
0

1∫
0

1∫
0

θq

(
∂u

∂τ
+
∂f∗

∂ξ
+
∂g∗

∂η
+
∂h∗

∂ζ
− S

∗
)
dξdηdζdτ = 0.

where we choose a tensor product of the basis functions
θp(ξ, τ) = ψp(ξ)ψq(η)ψr (ζ)ψs(τ).
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2. The numerical method (ADER approach) Local space-time Discontinuous Galerkin predictor

Integration by parts in time yields...

1∫
0

1∫
0

1∫
0

θq(ξ, 1)u(ξ, 1)dξdηdζ −
1∫

0

1∫
0

1∫
0

1∫
0

(
∂

∂τ
θq

)
udξdηdζdτ

+

1∫
0

1∫
0

1∫
0

1∫
0

[
θq

(
∂f∗

∂ξ
+
∂g∗

∂η
+
∂h∗

∂ζ
− S

∗
)]

dξdηdζdτ

=

1∫
0

1∫
0

1∫
0

θq(ξ, 0)wh(ξ, tn)dξdηdζ.

We introduce the discrete space-time solution qh

qh = qh(ξ, τ) = θp (ξ, τ) q̂p,

and similarly for the �uxes and sources

f
∗
h = θp f̂

∗
p = θpf

∗ (q̂p) , . . . S
∗
h = θpŜ

∗
p = θpS

∗ (q̂p) .

Insert everything in Eq. above and obtain....
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2. The numerical method (ADER approach) Local space-time Discontinuous Galerkin predictor

1∫
0

1∫
0

1∫
0

θq(ξ, 1)θp(ξ, 1)q̂p dξdηdζ −
1∫

0

1∫
0

1∫
0

1∫
0

(
∂

∂τ
θq

)
θpq̂p dξdηdζdτ

+

1∫
0

1∫
0

1∫
0

1∫
0

[
θq

(
∂

∂ξ
θp f̂

∗
p +

∂

∂η
θpĝ

∗
p +

∂

∂ζ
θpĥ

∗
p − θpŜ∗

p

)]
dξdηdζdτ

=

1∫
0

1∫
0

1∫
0

θq(ξ, 0)wh(ξ, tn) dξdηdζ ,

which is a nonlinear algebraic equation system for the unknown coe�cients q̂p.
In a more compact form:

K
1
qpq̂p + K

ξ
qp · f̂∗p + K

η
qpĝ

∗
p + K

ζ
qpĥ

∗
p = MqpŜ

∗
p + F

0
qmŵ

n
m,

with the various matrices de�ned as

K
1

qp =

1∫
0

1∫
0

1∫
0

θq(ξ, 1)θp(ξ, 1)dξ −
1∫
0

1∫
0

1∫
0

1∫
0

(
∂

∂τ
θq

)
θpdξdτ,

K
ξ
qp =

(
K
ξ
qp,K

η
qp,K

ζ
qp

)
=

1∫
0

1∫
0

1∫
0

1∫
0

θq
∂

∂ξ
θpdξdτ,

Mqp =

1∫
0

1∫
0

1∫
0

1∫
0

θqθpdξdτ, F
0

qp =

1∫
0

1∫
0

1∫
0

θq(ξ, 0)ψm(ξ)dξ,
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2. The numerical method (ADER approach) Local space-time Discontinuous Galerkin predictor

The product of the matrices with the vectors of degrees of freedom can be e�ciently

implemented in a dimension�by�dimension manner. An iterative scheme can be adopted

[see Dumbser & Zanotti (2009), JCP, 228, 6991]

K1
qpq̂

k+1
p −MqpŜ

∗,k+1
p = F0

qmŵ
n
m −K

ξ
qp · f̂

∗,k
p −K

η
qpĝ
∗,k
p −K

ζ
qpĥ
∗,k
p

Once this is done, we have everything to write the scheme as

un+1
ijk = un

ijk −
∆t

∆xi

(
fi+ 1

2
,jk − fi− 1

2
,jk

)
− ∆t

∆yj

(
gi ,j+ 1

2
,k − gi ,j− 1

2
,k

)
− ∆t

∆zk

(
hij ,k+ 1

2
− hij ,k− 1

2

)
+ ∆tSijk ,

Local Lax-Friedrichs �ux

~f
(
q
−
h , q

+
h

)
=

1

2

(
f(q−h ) + f(q+h )

)
− 1

2
|smax|

(
q
+
h − q

−
h

)
, (1)

where |smax| denotes the maximum absolute value of the eigenvalues of the
Jacobian matrix A = ∂f/∂u.

Osher�type �ux

~f
(
q
−
h , q

+
h

)
=

1

2

(
f(q−h ) + f(q+h )

)
− 1

2

(∫ 1

0

|A(ψ(s))| ds
)(

q
+
h − q

−
h

)
, (2)
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3. Adaptive Mesh Re�nement AMR implementation
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3. Adaptive Mesh Re�nement AMR implementation

AMR implementation

We have developed a cell-by-cell AMR technique in which the computational

domain is discretized with a uniform Cartesian grid at the coarsest level.

Adopt a re�nement criterion, marking a cell for re�nement if

χm > χref , where

χm =

√ ∑
k,l (∂

2Φ/∂xk∂xl )2∑
k,l [(|∂Φ/∂xk |i+1 + |∂Φ/∂xk |i )/∆xl + ε|(∂2/∂xk∂xl )||Φ|]2

.

When a cell of the level ` is re�ned, it is subdivided as

∆x` = r∆x`+1 ∆y` = r∆y`+1 ∆z` = r∆z`+1 ∆t` = r∆t`+1

Each cell Cm, at any level of re�nement, has one among three possible

status �ags.

- active cell

- virtual child cell

- virtual mother cell
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3. Adaptive Mesh Re�nement AMR implementation

...AMR implementation

If the Voronoi neighbors of an active re�ned cell Cm are not themselves at the
same level of re�nement of Cm, they have virtual children at the same level of
re�nement of Cm.
In order to keep the reconstruction local on the coarser grid level, we have r ≥ M.

The levels of re�nement of two cells that are Voronoi neighbors of each other can
only di�er by at most unity.
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3. Adaptive Mesh Re�nement AMR implementation

The beauty of the local-spacetime DG predictor: it does not need

any exchange of information with neighbor elements, even if two

adjacent cells are on di�erent levels of re�nement.

Projection

Projection is the typical AMR operation, by which an active mother

assigns values to the virtual children (σ = 1) at intermediate times

ūm(tn` ) =
1

∆x`

1

∆y`

1

∆z`

∫
Cm

qh(x, tn` )dx. (3)

Needed for performing the reconstruction on the �ner grid level at

intermediate times.

Averaging

Averaging is another typical AMR operation by which a virtual mother

cell (σ = −1) obtains its cell average by averaging recursively over the

cell averages of all its children at higher re�nement levels.

ūm =
1

rd

∑
Ck∈Bm

ūk . (4)
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3. Adaptive Mesh Re�nement Local Timestepping
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3. Adaptive Mesh Re�nement Local Timestepping

Local Timestepping

Every re�nement level is advanced in time with its local timestep

∆t` = r∆t`+1. Update criterion:

tn+1
` ≤ tn+1

`−1 , 0 ≤ ` ≤ `max, (5)

Starting from the common initial time t = 0, the �nest level of re�nement

`max is evolved �rst and performs a number of r sub-timesteps before the

next coarser level `max − 1 performs its �rst time update.

=⇒ A total amount of r` sub-timesteps on each level are performed in

order to reach the time tn+1
0 of the coarsest level.
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4. The Richtmyer�Meshkov instability

RHD equations

∂tu + ∂i f
i = 0 ,

The conservative variables and the corresponding �uxes in the i direction

are

u =

 D

Sj

E

 , f i =

 v iD

W i
j

S i

 . (6)

D = ργ,

Si = ρhγ2vi ,

E = ρhγ2 − p,

where γ = (1− v2)−1/2 is the Lorentz factor of the �uid with respect to

the laboratory observer and

Wij ≡ ρhγ2vivj + pδij
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4. The Richtmyer�Meshkov instability

Just one test...

Figura : Standard Riemann problem: the shock wave is resolved within one single

cell!!
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4. The Richtmyer�Meshkov instability

The Richtmyer�Meshkov instability

The Richtmyer�Meshkov (RM) instability is a typical �uid instability which

develops when a shock wave crosses a contact discontinuity within a �uid,

or between two di�erent �uids.

Relevant in

Inertial Con�nement Fusion

Supernovae remnant formation

Relativistic jets

Figura : Schematic representation of the initial conditions in a representative

model with Atwood number A > 0.
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Conclusions

We have presented the �rst ADER-WENO �nite volume scheme for relativistic
hydrodynamics on AMR grids

Compared to Runge�Kutta time stepping, the use of a high order one�step scheme
in time reduces the number of nonlinear WENO reconstructions and the number of
necessary MPI communications.

High Order in combination with AMR is extremely bene�cial, in particular when
small scale structures need to be solved

When applied to the study of the Richtmyer�Meshkov instability, new interesting
results are obtained
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