Summary of
 $6^{\text {th }}$ East-Asia Numerical Astrophysics Meeting

during September 15 to 19, 2014
In Kyung Hee University, Suwon, Korea

Dongsu Ryu
Ulsan National Institute of Science and Technology (UNIST)
Korea

EANAM (East-Asia Numerical Astrophysics Meeting)

- 0th Meeting - 2002 in ASIAA, Taipei, Taiwan (EANAM was suggested, Chi Yuan)
- $1^{\text {st }}$ Meeting - 2004 in NAOJ, Mitaka, Japan
- $2^{\text {nd }}$ Meeting - 2006 in KASI, Daejeon, Korea
- 3rd Meeting - 2008 in PMO, Nanjing, China
- $4^{\text {th }}$ Meeting -2010 in ASIAA, Taipei, Taiwan
- 5th Meeting - 2012 in YITP, Kyoto, Japan
- 6th Meeting - 2014 in Kyung Hee Univ., Suwon, Korea
- $7^{\text {th }}$ Meeting - 2016 in China

List (partial) of topics covered in this EANAM, sorted by approach (instead of by objects)

- N-body/SPH simulations cosmological structure formation galaxy formation and evolution dynamics and evolution of stellar systems formation and dynamics of black hole formation and evolution of disk
- Hyrdodynamic and MHD simulations cosmological structure formation formation of black hole galaxy formation and evolution, spiral structure molecular cloud, star formation in the ISM supernova explosion, jet, accretion solar and space physics atmosphere of planets turbulence and dynamo reconnection
cosmic ray acceleration
- Radiation hydrodynamic and MHD simulations radiative transfer radiation feedback
- Relativistic hydrodynamic and MHD simulations resistive (G)RMHD two fluid RMHD jet and accretion disk around black holes reconnection
- Numerical relativity dynamics and merger of black holes gravitational wave
- PIC simulations reconnection
- Solving QM equation cosmological structure formation
- Code
high-order, high-performance (R)HD/MHD code code for two fluid plasma, code with specific S, code for resisitive (G)RMHD, ...
numerical relativity
stability of code (wiggle instability) improvement of SPH

Focker-Plank equation
radiative transfer
i-ApMsFEM
image processing

Progresses in numerical astrophysics (partial list)

- 1d \rightarrow 2d \rightarrow 3d
- increasing number of zones and particles: $\sim 1000^{3}$ are common
- simulations with simple physics \rightarrow simulations with multi-physics
- codes with $1^{\text {st }}$ or $2^{\text {nd }}$ order schemes \rightarrow higher-order schemes
- single-level grid \rightarrow AMR grid
- massive parallelization, GPU, etc \rightarrow high performance
- line plots \rightarrow images \rightarrow movies
- and etc

My prediction (or wish list) of future direction

- Development of better codes
\leftarrow higher-order, more accurate schemes, complying conservation laws or constraints, and etc
- Toward higher resolution and/or multi scale problems clusters with larger $\mathrm{N}_{\text {cores }} \rightarrow$ need more efficient parallelization GPU \rightarrow require modification of code AMR hybrid codes
- Introduction of new codes, for example for N-body, SPH, Vlasov-Poisson code, and etc for plasma
PIC (particle-in-cell) code gyro-kinetic code gyro-fluid code fluid (hydro, MHD) code
$\downarrow \begin{array}{r}\text { smaller scales } \\ \longleftarrow \\ \\ \longleftarrow\end{array}$ gyro scale
larger scales
- Radiation hydrodynamics and MHD, radiative transfer
- Inclusion of more realistic physics in simulations: some are incorporated as phenomenology models based on incomplete understanding of them needs more works to understand them from first principles
- Identification and exploration of more diverse issues of physics or even new physics
- More efforts to visualize the data

Numerical Astrophysics in East-Asia

- World leading computing facilities such as (June 2014)

Tianhe- 2 in China ($1^{\text {st }}$ in Top 500 supercomputers)
K-computer in Japan (4 $4^{\text {th }}$ in Top 500 supercomputers)
TSUBAME 2.5 in Japan ($13^{\text {th }}$ in Top 500 supercomputers)
Tianhe-1A in China ($14^{\text {th }}$ in Top 500 supercomputers)
Tachyon II in Korea ($167^{\text {th }}$ in Top 500 supercomputers)
Alps in Taiwan (303th in Top 500 supercomputers)

- how to utilize them for astrophysics?
- Numerical astrophysics
- still minor among astronomy and astrophysics !
- After more than 10 years efforts through EANAN
- the regional collaboration not much enhanced ?

Future Direction

- ???

Thanks to

Organization Committee Members

especially Prof. Sungsoo Kim

and students who help run the meeting

